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Abstract

The minimum principle of complementary energy is established for cable networks involving only stress components

as variables in geometrically nonlinear elasticity. It is rather amazing that the complementary energy always attains

minimum value at the equilibrium state irrespective of the stability of cable networks, contrary to the fact that only the

stationary principles have been presented for elastic trusses and continua even in the case of stable equilibrium state. In

order to show the strong duality between the minimization problems of total potential energy and complementary

energy, the convex formulations of these problems are investigated, which can be embedded into a primal–dual pair of

second-order cone programming problems. The existence and uniqueness of solution are also investigated for the

minimization problem of complementary energy.
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1. Introduction

Among the various variational principles in static mechanics, the complementary energy principle in

large deformation elasticity has raised several interesting discussions since the first contribution by Hel-

linger (1914). Under assumption of small deformation, it is well known that the complementary energy
principle contains only stress components as independent variables, whereas the displacements are inde-

pendent variables in the total potential energy principle. This beautiful symmetric property, however, seems

to break if we allow large rotation, because the well-known Hellinger–Reissner principle involves the un-

known displacement as well as the second Piola–Kirchhoff stress. Coupling of the unknown stress and

displacement prevents us from development of force method allowing finite rotation. From both theoretical

and practical points of view, it has been a challenging task to formulate the complementary energy principle

only in terms of stress components.
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Koiter (1976) made the important contribution through the excellent survey of related works until 70s.

The complementary energy formulation using the first Piola–Kirchhoff stress along with the deformation

gradient was presented by Levinson (1965) and Zubov (1970) based on the Legendre transformation. It

may be possible to eliminate the deformation gradient from the Zubov�s formulation, if the deformation
gradient can be expressed only in terms of the first Piola–Kirchhoff stress; i.e., if there exists an inversion of

constitutive law that defines the first Piola–Kirchhoff stress as a function of displacement gradient. Koiter

(1976) proved that this inversion always exists, but multi-valued in usual case. From the mathematically

rigorous definition, the lack of uniqueness means that there exists no inversion of constitutive law. How-

ever, we obey Koiter�s terminology throughout this paper; i.e., we say that there exits a multi-valued in-

version. He also presented the necessary condition for unique inversion such that the strain energy is a

strictly convex and coercive function with respect to the displacement gradient. Even if this condition holds,

it is not easy to express the complementary energy in an explicit form.
For many cases of small strain and finite deformation, the assumption of semi-linear material is prac-

tically acceptable, where the Biot stress is assumed to be a linear function of the right extensional strain. In

the case of isotropic semi-linear material, Koiter (1976) presented the explicit expression of complementary

energy function, which involves the Biot stress and the first Piola–Kirchhoff stress. Since these two stresses

are related through the rotation, the subsidiary conditions of complementary energy principle may involve

the unknown rotation. Allowing the multi-valued inversion of stress–strain relation, Mikkola (1989) pre-

sented the explicit form of complementary energy of trusses only in terms of internal force vectors.

However, Mikkola�s complementary energy function cannot be determined uniquely without information
of unknown axial forces at the equilibrium state.

It should be noted that the stability of equilibrium state does not always mean the local minimum of the

complementary energy (see, e.g., the counter example (Koiter, 1976)). Therefore, only the stationary

principle of complementary energy has been discussed in the finite deformation theory for general struc-

tures such as elastic continuum, trusses, beams, etc.

Recently, the concepts of convex analysis have been applied to this problem; i.e., the complementary

energy is defined by the (Fenchel�s) conjugate transformation, instead of the Legendre transformation, of

the strain energy function in terms of deformation gradient. In accordance with this definition, the com-
plementary energy is now uniquely determined. However, the stationary principle using such a comple-

mentary energy is valid only if the strain energy is a convex function of deformation gradient. Usually, this

condition is not satisfied, even in the case of linear material. Atai and Steigmann (1997) presented the

relaxed strain energy of cable member as the lower convex envelope of strain energy of truss member, and

formulated the minimum principle of complementary energy for cable networks by using the conjugate

transformation. Unfortunately, they did not formulate the complementary energy function explicitly.

Observing that the total potential energy attains local minimum at the stable equilibrium state, it is

natural to regard the minimization problem of total potential energy as a (finite or infinite dimensional)
optimization problem. Under the assumption of small deformation and linear elastic material, the mini-

mization problem of total potential energy can be formulated as a convex quadratic programming (QP)

problem. Then, the minimization problem of complementary energy is obtained as the well-known Dorn�s
dual problem of QP, which is a separable dual problem; i.e., the primal and dual problems have no

common variables. The validity of the obtained complementary principle as well as the zero duality gap can

be shown by using the strong duality of QP. A general nonlinear programming problem does not have a

separable dual problem, and there exists the duality gap between the primal and dual optimal objective

values. This explains, from the view point of duality theory, the difficulty of formulating the extremum
principle of complementary energy in the finite deformation theory. Recently, the extended concept of

duality, which is referred to as triality, was presented by Gao (1997, 1999) and Gao and Strang (1989) for

the extremum complementary energy principles of finite elasticity. Assuming nonsingularity of the second

Piola–Kirchhoff stress, Gao�s complementary energy is explicitly expressed in terms of both the first and the
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second Piola–Kirchhoff stresses. At the equilibrium state, this complementary energy attains the stationary

point under the subsidiary constraints such that the first Piola–Kirchhoff stress satisfies the equilibrium

equation.

In the authors� very recent paper (Kanno et al., 2002), it was shown for cable networks that the mini-
mization problem of total potential energy can be reformulated as a second-order cone programming

(SOCP) problem. SOCP is a class of convex programming including linear programming (LP) and QP, and

is included in semi-definite programming (Vandenberghe and Boyd, 1996). SOCP has received increasing

attention for its wide fields of application (Jarre et al., 1998; Vanderbei and Yurttan Benson, 1998; Ben-Tal

and Nemirovski, 2001), and for the development of practical algorithms referred to as primal–dual interior-

point methods (Monteiro and Tsuchiya, 2000).

SOCP is known to be a special case of LP over symmetric cone, and have a separable symmetric dual

problem with zero duality gap (Ben-Tal and Nemirovski, 2001). Therefore, it is very natural to conjecture
that the minimization problem of complementary energy is obtained as the dual SOCP problem, which

involves no primal variables. In this paper, we propose a very simple and easy approach to establish the

minimum complementary energy principle for cable networks; i.e., the minimization problem of comple-

mentary energy will be immediately derived by using the well-established duality theory of SOCP. In this

approach, the ambiguity in the existence and uniqueness of inversion of constitutive law is successfully

avoided. Moreover, the complementary energy function is obtained explicitly in a simple algebraic form.

This advantage can be understood from the nice structure of corresponding Lagrangian suddle function.

This paper is organized as follows. In Section 2, we introduce the SOCP problem, and prepare the results
about its strong duality. In Section 3, we present an SOCP problem in the standard form, which has the

same optimizer as that of the minimization problem of total potential energy of cable networks. By using

the framework of duality theory of SOCP, the separable dual problem to the minimization of total potential

energy is obtained in Section 4. The strong duality and the optimality conditions of the obtained dual

problem are investigated to guarantee that the optimal solution corresponds to the set of internal force

vectors at the equilibrium state. Thus, the minimum principle of complementary energy is established in

truly complementary form; i.e., the principle contains only stress components, and the sum of total po-

tential energy and complementary energy becomes equal to zero at the equilibrium state. Section 5 is
devoted to the discussion on the existence of solution. In Section 6, the concept of complementary work is

revisited in order to investigate the physical meaning of the obtained complementary energy function. A

simple cable network is examined in Section 7 to illustrate the results. Some remarks are given in Section 8,

where our approach is compared with others in the literature from the unified view point of Lagrangian

duality. It is interesting to see that the different approaches can be interpreted as the variety of Lagrangians,

since the Lagrangian is a classical and rather familiar mathematical tool for researchers working on

mechanics. It is also clarified how our approach can avoid the difficulties of coupling of stress and dis-

placement and multi-valued inversion of constitutive law. Sections 9 and 10 are devoted to the proofs of
lemmas and theorem in Sections 3 and 4, respectively.
2. Primal and dual pair of second-order cone programs

In this paper, all the vectors are assumed to be column vectors. To simplify the notation, however, define
ða; bÞ ¼ ða; bÞT ¼ ðaT; bTÞT 2 Rnþm
for vectors a 2 Rn and b 2 Rm.

Let KðpÞ be the second-order cone in p-dimensional space defined as (Monteiro and Tsuchiya, 2000)
KðpÞ ¼ fðs0; s1Þjs0 P ks1kg;
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where s0 2 R and s1 2 Rp
1. The notation ks1k for s1 2 Rp
1 denotes the Euclidean norm of the vector s1;
i.e., ks1k ¼ ðsT1 s1Þ

1=2
. For a simple example of p ¼ 3, the second-order cone is defined as
Kð3Þ ¼ ðx0; x1; x2Þjx0
�

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q �
;

where s1 ¼ ðx1; x2Þ and s ¼ ðx0; s1Þ. It is easy to see that Kð3Þ coincides with the surface and interior of a
circular cone in three-dimensional space, which is as illustrated in Fig. 1.

K�ðpÞ denotes the dual cone of KðpÞ, which is defined by using k0 2 R and k1 2 Rp
1 as
K�ðpÞ ¼ fðk0; k1Þjk0s0 þ kT
1 s1 P 0; 8ðs0; s1Þ 2 KðpÞg:
Then K�ðpÞ ¼ KðpÞ holds, which is known as the self-duality (Monteiro and Tsuchiya, 2000; Ben-Tal and

Nemirovski, 2001). It follows that
ðk0; k1Þ 2 KðpÞ () k0s0 þ kT
1 s1 P 0; 8ðs0; s1Þ 2 KðpÞ ð1Þ
is satisfied. In the following, we often use the notation s0 P ks1k instead of ðs0; s1Þ 2 KðpÞ.
We consider the following SOCP problem:
ðPSOCPÞ : min dTx
s:t: Aix ¼ si þ ei; si0 P ksi1k ði ¼ 1; . . . ; kÞ;

�
ð2Þ
where x 2 Rm and si ¼ ðsi0; si1Þ 2 Rni ði ¼ 1; . . . ; kÞ are variables, d 2 Rm and ei 2 Rni ði ¼ 1; . . . ; kÞ are

constant vectors, and Ai 2 Rni�m ði ¼ 1; . . . ; kÞ are constant matrices. The dimension of ðPSOCPÞ is deter-

mined by ðm; k; n1; . . . ; nkÞ. The dual problem of ðPSOCPÞ is also an SOCP problem defined as
ðDSOCPÞ : max
Pk
i¼1

eTi zi

s:t:
Pk
i¼1

AT
i zi ¼ d; zi0 P kzi1k ði ¼ 1; . . . ; kÞ;

9>>=>>; ð3Þ
where zi ¼ ðzi0; zi1Þ 2 Rni ði ¼ 1; . . . ; kÞ are variables. It is known that the problem dual to ðDSOCPÞ is

ðPSOCPÞ; i.e., the duality of SOCP is symmetric (Ben-Tal and Nemirovski, 2001).
To simplify the notation, define N ¼

Pk
i¼1 ni, s ¼ ðs1; . . . ; skÞ 2 RN , and z ¼ ðz1; . . . ; zkÞ 2 RN . We say

that ðx; sÞ and z are feasible solutions of ðPSOCPÞ and ðDSOCPÞ, respectively, if they satisfy all the constraints

of ðPSOCPÞ and ðDSOCPÞ. Define the sets F0ðPSOCPÞ � RmþN and F0ðDSOCPÞ � RN by
F0ðPSOCPÞ ¼ fðx; sÞjAix ¼ si þ ei; si0 > ksik ði ¼ 1; . . . ; kÞg;

F0ðDSOCPÞ ¼ z
Xk
i¼1

AT
i zi

�����
(

¼ d; zi0 > kzik ði ¼ 1; . . . ; kÞ
)
:

Fig. 1. Second-order cone in three-dimensional space.
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ðx; sÞ 2 F0ðPSOCPÞ and z 2 F0ðDSOCPÞ are referred to as interior-feasible solutions of ðPSOCPÞ and ðDSOCPÞ,
respectively.

Assumption 2.1
i(i) The m rows of AT are linearly independent, where AT ¼ ðAT

1 ; . . . ;A
T
k Þ 2 Rm�N .

(ii) F0ðPSOCPÞ 6¼ ;, F0ðDSOCPÞ 6¼ ;.

ðPSOCPÞ and ðDSOCPÞ are known to satisfy the following duality property:

Theorem 2.2 (Strong duality of SOCP). Under Assumption 2.1,

i(i) ðPSOCPÞ and ðDSOCPÞ have optimal solutions ð�xx;�ssÞ and �zz, respectively, and
dT

�ssTi
�xx ¼
Xk
i¼1

eTi �zzi: ð4Þ
(ii) feasible solutions ð�xx;�ssÞ and �zz of ðPSOCPÞ and ðDSOCPÞ, respectively, are optimal solutions ðaÞ if and only if
(4) is satisfied; ðbÞ if and only if they satisfy
�zzi ¼ 0 ði ¼ 1; . . . ; kÞ: ð5Þ
Proof. See Theorem 2.4.1 in Ben-Tal and Nemirovski (2001). �

Theorem 2.2 plays a fundamental role to establish the minimum principle of complementary energy in

Section 4.
3. Minimum principle of total potential energy for cable networks

Consider a pin-jointed cable network in three-dimensional space. We assume a linear elastic material

obeying Hooke�s law. The network is discretized into members which connect pin-joints and supports.

Let nm and nd denote the numbers of members and unconstrained degrees of freedom, respectively. The
reference state and actual equilibrium state are referred to as CI and CII, respectively. x0 2 Rnd and u 2 Rnd ,

respectively, denote the vectors of nodal coordinates at CI, and nodal displacements at the deformed state

corresponding to unconstrained degrees. We specify the external dead loads f 2 Rnd for unconstrained

degrees.

Throughout this paper, we assume the following conditions, which are satisfied by most of actual cable

networks:

Assumption 3.1. Suppose that the cable network C satisfies the conditions such that

ii(i) there is no more than one member which has the same adjacency;

i(ii) each member connects two different nodes;

(iii) there is a path between any pair of nodes;

(iv) at least one freedom of displacement with respect to each coordinate x1, x2 and x3 is constrained; i.e., C
is not a free-body with respect to any direction.

Assumption 3.1 will be utilized to ensure the strong duality between the minimization problems of total
potential energy and complementary energy (see Sections 4 and 5).
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Let ci and l0i ði ¼ 1; . . . ; nmÞ denote the elongation regarded as the generalized strain, and the specified

initial unstressed length of the ith member, respectively. The relation between ci and u is written as
ci þ l0i ¼ kBiðx0 þ uÞ 
 bik ði ¼ 1; . . . ; nmÞ; ð6Þ
which is regarded as the geometrically exact compatibility condition. For each i ¼ 1; . . . ; nm, Bi 2 R3�nd is a

constant matrix determined only by the connectivity of nodes and the ith member, each element of which is

either f
1; 0; 1g. bi 2 R3 is a constant vector that consists of the specified nodal coordinates of support if

the ith member is connected to the support, otherwise bi ¼ 0.

Let ri denote the axial force, which is a generalized stress. The cable member is assumed not to capable

of transmitting the compression force; i.e., the relation between ci and ri is written as
riðciÞ ¼
kici ðci P 0Þ;
0 ð
l0i 6 ci < 0Þ;

�
ð7Þ
where ki > 0 denotes the extensional stiffness of the ith member. Note that ci defined by (6) satisfies
ci P 
 l0i for any u 2 Rnd . From (7), the strain energy wi in terms of ci is obtained as
wiðciÞ ¼
Z ci

0

riðciÞdci ¼
1

2
kic2i ðci P 0Þ;

0 ð
l0i 6 ci < 0Þ:

(
ð8Þ
By using (6) and (8), the problem of minimum total potential energy is formulated as
ðPÞ : min Pðc; uÞ ¼
Pnm
i¼1

wiðciÞ 
 f Tu

s:t: ci ¼ kBiðx0 þ uÞ 
 bik 
 l0i ði ¼ 1; . . . ; nmÞ;

9=; ð9Þ
where independent variables are u 2 Rnd . Let cII ¼ ðcIIi Þ 2 Rnm and uII 2 Rnd , respectively, denote the vectors

of member elongation and nodal displacements at CII. The principle of minimum total potential energy

states that ðcII; uIIÞ is an optimal solution of ðPÞ.
Notice here that ðPÞ is a nonconvex optimization problem, since ci defined by (6) is a nonconvex

function of u. This implies that the classical Lagrangian dual problem of ðPÞ contains unknown u, and does
not satisfy the strong duality. Therefore, it is not straightforward to establish the dual minimum principle to

ðPÞ without duality gap only in terms of the stress components. See Section 8 for more details. This dif-

ficulty motivates us to investigate the following convex problem:
ðPÞ : min /P ðy; uÞ ¼
Pnm
i¼1

1

2
kiy2i 
 f Tu

s:t: yi þ l0i P kBiðx0 þ uÞ 
 bik ði ¼ 1; . . . ; nmÞ;

9=; ð10Þ
where y ¼ ðyiÞ 2 Rnm and u 2 Rnd are independent variables. The following lemma gives the relation be-

tween optimal solutions of ðPÞ and ðP Þ:

Lemma 3.2 (Relation between ðPÞ and ðP Þ).
i(i) ðcII; uIIÞ satisfying (6) is an optimal solution of ðPÞ if and only if ð�yy; uIIÞ defined as
�yyi
 ¼
cIIi ðcIIi P 0Þ
0 ð
l0i 6 cIIi < 0Þ

�
ði ¼ 1; . . . ; nmÞ ð11Þ
is an optimal solution of ðP Þ.

(ii) If ðcII; uIIÞ and ð�yy; �uuÞ are optimal solutions of ðPÞ and ðP Þ, respectively, then PðcII; uIIÞ ¼ /P ð�yy; �uuÞ.

Proof. See Kanno et al. (2002) (Section 3). �
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Lemma 3.2 implies that uII can be obtained by solving ðP Þ instead of ðPÞ. It has been shown that ðPÞ is
easily solved compared with ðPÞ. Indeed, the primal–dual interior-point method is a very effective algo-

rithm with polynomial-time convergence to obtain an optimal solution of ðP Þ. See Kanno et al. (2002) for

more details.
By using the convexity of /P and after simple algebraic manipulation, ðP Þ can be reduced to an SOCP

problem. Consider the following problem:
ðPSÞ : min /P
Sðu; tÞ ¼

Pnm
i¼1

ti 
 f Tu

s:t:
ti
2ki

þ 1P
ti
2ki


 1

yi

 !�����
�����; yi þ l0i P kBiðx0 þ uÞ 
 bik ði ¼ 1; . . . ; nmÞ;

9>>>=>>>; ð12Þ
where independent variables are y 2 Rnm, u 2 Rnd , and t ¼ ðtiÞ 2 Rnm. The following lemma implies that ðPÞ
and ðPSÞ are equivalent:

Lemma 3.3 (Relation between ðP Þ and ðPSÞ).
(i) ð�yy; �uuÞ is an optimal solution of ðP Þ if and only if ð�yy; �uu;�ttÞ satisfying
�tti
 ¼
ki
2
�yy2i ði ¼ 1; . . . ; nmÞ ð13Þ
is an optimal solution of ðPSÞ.

(ii) If ð�yy; �uuÞ and ð~yy; ~uu;~ttÞ are optimal solutions of ðP Þ and ðPSÞ, respectively, then /P ð�yy; �uuÞ ¼ /P

Sð~uu;~ttÞ.

Proof. See Section 9. �

Note that ðPSÞ has the linear objective function, and the feasible set of ðPSÞ is represented by the 2nm

second-order cones; i.e., ðPSÞ is an SOCP problem. Indeed, it will be seen that ðPSÞ can be embedded into

ðPSOCPÞ in the following section.
4. Minimum principle of complementary energy

In order to formulate the dual problem of ðPÞ, we first investigate the dual problem of ðPSÞ, which is

referred to as ðDSÞ. Because ðPSÞ is an SOCP problem, ðDSÞ can be obtained by simple algebraic mani-

pulation by using the framework of SOCP duality theory introduced in Section 2. To this end, it is required

to express ðPSÞ in the form of ðPSOCPÞ. Recall that ðPSOCPÞ and ðDSOCPÞ have no common variables; i.e., an

SOCP problem has the separable dual problem, which is rather unusual property for nonlinear optimi-

zation problem. This special structure, as well as the strong duality (Theorem 2.2), of SOCP is an indis-

pensable property to the truly complementary energy principle, otherwise the dual problem contains the
unknown displacement components such as rotations.

For the dimensions of ðPSOCPÞ, assign
m ¼ 2nm þ nd; k ¼ 2nm;

n1 ¼ � � � ¼ nnm ¼ 4; nnmþ1 ¼ � � � ¼ n2nm ¼ 3:
ð14Þ
Let
d ¼ ð1; 0;
f Þ 2 R2nmþnd ; x ¼ ðt; y; uÞ 2 R2nmþnd ; ð15Þ
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where 0 ¼ ð0; . . . ; 0Þ 2 Rnm and 1 ¼ ð1; . . . ; 1Þ 2 Rnm. Consequently, we can see /P
Sðu; tÞ ¼ dTx, which im-

plies that the objective function of ðPSÞ is embedded into that of ðPSOCPÞ.
Next, consider the constraints of ðPSÞ. Define hi ¼ ðhi

jÞ 2 Rnm ði ¼ 1; . . . ; nmÞ as
hi
j ¼

1 ðj ¼ iÞ;
0 ðotherwiseÞ:

�

Assigning si ði ¼ 1; . . . ; 2nmÞ as
si ¼ ðyi þ l0i ;Biðx0 þ uÞ 
 biÞT; snmþi ¼
ti
2ki

�
þ 1;

ti
2ki


 1; yi

�T

ði ¼ 1; . . . ; nmÞ; ð16Þ
x and si satisfy the linear equality constraints Aix ¼ si þ ei in ðPSOCPÞ with
Ai ¼ 0T hiT 0T

O O Bi

� �
; Anmþi ¼

1

2ki
hiT 0T 0T

1

2ki
hiT 0T 0T

0T hiT 0T

2666664

3777775 ði ¼ 1; . . . ; nmÞ; ð17Þ

ei ¼ ð
l0i ;
Bix
0 þ biÞT; enmþi ¼ ð
1; 1; 0ÞT ði ¼ 1; . . . ; nmÞ: ð18Þ
Accordingly, we see for i ¼ 1; . . . ; nm that the inequality constraint si0 P ksi1k in ðPSOCPÞ corresponds to
the first constraint in ðPSÞ. For i ¼ nm þ 1; . . . ; 2nm, si0 P ksi1k in ðPSOCPÞ corresponds to the second con-

straint in ðPSÞ. Thus, ðPSÞ is embedded into ðPSOCPÞ.
In the following, the dual problem of ðPSÞ, which is referred to as ðDSÞ, will be derived from ðDSOCPÞ

along with the definitions of (14), (15), (17) and (18). Assigning zi in ðDSOCPÞ as
zi ¼ ðqi; viÞT 2 R4; znmþi ¼ ni ¼ ðni0; ni1; ni2ÞT 2 R3 ði ¼ 1; . . . ; nmÞ; ð19Þ
(17)–(19) lead to
AT
i zi ¼

0
qih

i

BT
i vi

0@ 1A 2 R2nmþnd ; eTi zi ¼ 
l0i qi 
 ðBix
0 
 biÞTvi ði ¼ 1; . . . ; nmÞ; ð20Þ

AT
nmþiznmþi ¼

ni0 þ ni1

2ki
hi

ni2h
i

0

0BB@
1CCA 2 R2nmþnd ; eTnmþiznmþi ¼ 
ni0 þ ni1 ði ¼ 1; . . . ; nmÞ: ð21Þ
It follows from (15), (20) and (21) that the equality constraints
Pk

i¼1 A
T
i zi ¼ d in ðDSOCPÞ are reduced to
Xnm
i¼1

ni0 þ ni1

2ki
hi

ðqi þ ni2Þhi

BT
i vi

0BB@
1CCA ¼

1

0


f

0@ 1A: ð22Þ
By using (19), we see that the inequality constraints zi0 P kzi1k ði ¼ 1; . . . ; 2nmÞ in ðDSOCPÞ are

reduced to
q P kv k; n P kðn ; n ÞTk ði ¼ 1; . . . ; nmÞ: ð23Þ
i i i0 i1 i2
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By substituting (20)–(23) into ðDSOCPÞ, the dual problem of ðPSÞ is obtained as
ðDSÞ : max /D
S ðq; v; nÞ ¼

Pnm
i¼1

ð
ni0 þ ni1Þ 

Pnm
i¼1

l0i qi 

Pnm
i¼1

ðBix
0 
 biÞTvi

s:t: ni0 þ ni1 ¼ 2ki; ni0 P kðni1; ni2ÞTk ði ¼ 1; . . . ; nmÞ;
qi þ ni2 ¼ 0; qi P kvik ði ¼ 1; . . . ; nmÞ;Pnm
i¼1

BT
i vi þ f ¼ 0;

9>>>>>>>>=>>>>>>>>;
ð24Þ
where independent variables are qi ¼ ðqiÞ 2 Rnm, v ¼ ðv1; . . . ; vnmÞ 2 R3nm, and n ¼ ðn1; . . . ; nnmÞ 2 R3nm.

Define the function wC
i on vi 2 R3 by
wC
i ðviÞ ¼

vTi vi
2ki

; ð25Þ
which coincides with the complementary strain energy in small deformation theory. Consider the following
problem:
ðPCÞ : min PCðvÞ ¼
Pnm
i¼1

wC
i ðviÞ þ

Pnm
i¼1

l0i kvik þ
Pnm
i¼1

ðBix
0 
 biÞTvi

s:t:
Pnm
i¼1

BT
i vi þ f ¼ 0;

9>>=>>; ð26Þ
where independent variables are v ¼ ðv1; . . . ; vnmÞ 2 R3nm. We can show the following lemma relating

optimal solutions of ðDSÞ and ðPCÞ:

Lemma 4.1 (Relation between ðDSÞ and ðPC)).

(i) vII is an optimal solution of ðPCÞ if and only if ð�qq; vII; �nnÞ satisfying
�nni0
 ¼
�qq2i
4ki

þ ki; �nni1 ¼ 
 �qq2i
4ki

þ ki; �nni2 ¼ 
�qqi ¼ 
kvIIi k ði ¼ 1; . . . ; nmÞ
is an optimal solution of ðDSÞ.

(ii) If vII and ð�qq;�vv; �nnÞ are optimal solutions of ðPCÞ and ðDSÞ, respectively, then PCðvIIÞ ¼ 
/D

S ð�qq;�vv; �nnÞ.

Proof. See Section 9. �

Notice again that ðPSÞ and ðDSÞ are primal–dual pair of SOCP problems satisfying the strong duality

(Theorem 2.2). Lemmas 3.2 and 3.3 imply the equivalence between ðPSÞ and ðPÞ, and Lemma 4.1 shows the

equivalence between ðDSÞ and ðPCÞ. Therefore, the strong duality between ðPÞ and ðPCÞ is immediately

obtained from the duality theorem of SOCP. Define the set F0ðPCÞ � R3nm as
F0ðPCÞ ¼ ðv1; . . . ; vnmÞ 2 R3nm
Xnm
i¼1

BT
i vi

�����
(

þ f ¼ 0

)
:

The following lemma should be prepared:
Lemma 4.2. If Assumption 3.1 is satisfied, then

i(i) the nd rows of BT are linearly independent, where BT ¼ ðBT
1 ; . . . ;B

T
nmÞ 2 Rnd�3nm ;

(ii) F0ðPCÞ 6¼ ; for any f 2 Rnd .



4446 Y. Kanno, M. Ohsaki / International Journal of Solids and Structures 40 (2003) 4437–4460
Proof

i(i) See Section 5.

(ii) This assertion follows from Lemma 4.2(i) immediately. �

Lemma 4.2 is utilized to show that Assumption 3.1 guarantees Assumption 2.1, which is a sufficient

condition for strong duality of primal–dual pair of SOCP problems. The following theorem is the main

result of this paper:

Theorem 4.3 (Strong duality of ðPÞ and ðPCÞ). Under Assumption 3.1.

i(i) ðPÞ and ðPCÞ have optimal solutions ðcII; uIIÞ and vII, respectively, and PðcII; uIIÞ ¼ 
PCðvIIÞ.
(ii) ðcII; uIIÞ and vII are optimal solutions of ðPÞ and ðPCÞ, respectively, if and only if there exists a vector

ðhII1 ; . . . ; h
II
nmÞ 2 R3nm satisfying
hIIi

cIIi

vIIi

Xnm
i¼
¼ Biðx0 þ uIIÞ 
 bi ði ¼ 1; . . . ; nmÞ; ð27Þ
¼ khIIi k 
 l0i ði ¼ 1; . . . ; nmÞ; ð28Þ
¼ 
riðcIIi Þ
hIIi

khIIi k
ðhIIi 6¼ 0Þ

0 ðhIIi ¼ 0Þ

(
ði ¼ 1; . . . ; nmÞ; ð29Þ
1

BT
i v

II
i þ f ¼ 0: ð30Þ
Proof. See Section 10. �

Theorem 4.3(ii) and the principle of minimum potential energy imply that cIIi and uII satisfying (27)–(30)

correspond to member elongation and vector of nodal displacements at CII. Accordingly, for i ¼ 1; . . . ; nm,
hIIi 2 R3 defined by (27) corresponds to the vector with the same direction and length as the ith member at

CII. It follows from (29) that hIIi and 
vIIi have the same direction as illustrated in Fig. 2, and kvIIi k is

equivalent to the axial force; i.e., 
vIIi corresponds to the internal force vector of the ith member at CII. The
condition (30) corresponds to the equilibrium equations in terms of internal forces. Hence, the comple-

mentary energy principle now can be stated such that the internal forces vII1 ; . . . ; v
II
nm are obtained by

minimizing PCðvÞ over the constraints of equilibrium equations. It should be emphasized that PCðvÞ is
Fig. 2. Physical interpretation of vIIi .
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determined uniquely for any v 2 R3nm. Moreover, Theorem 4.3(i) guarantees the zero duality gap between

ðPÞ and ðPCÞ.
5. Existence and uniqueness of the solution

Lemma 4.2 and Theorem 4.3 imply that Assumption 3.1 is a sufficient condition for existence of solu-

tions of ðPÞ and ðPCÞ. In this section, the existence and uniqueness of solution are investigated based on the

framework of graph theory.

Definition 5.1. For a cable network C,

i(i) the unconstrained cable network C� is uniquely defined by removing all the constraints of displace-
ments from C. Conversely, C is obtained by adding constraints at all the nodes in the set Jk

ðk ¼ 1; 2; 3Þ of C� in the direction of xk;
(ii) the directed graph GðCÞ is defined by regarding each node and member of C� as vertex and edge with

any direction, respectively.

Note that jJkj ¼ nn 
 ndk , where n
n and ndk denote the numbers of nodes and degrees of freedom of C in

the direction xk ðk ¼ 1; 2; 3Þ, respectively. Assumption 3.1(iv) implies jJkjP 1. It follows from Definition

5.1 that C� has no support, and the number of degrees of freedom is 3nn. By using the terminologies in
graph theory, Assumption 3.1(i)–(iii) can be alternatively written as (i) GðCÞ has no multiple edges, (ii) GðCÞ
has no loop, (iii) GðCÞ is connected; i.e., Assumption 3.1(i)–(iii) implies that GðCÞ is a connected simple

directed graph (see, e.g., Wilson, 1985 for basic background of graph theory).

Proof of Lemma 4.2 (i). Let D 2 Rnn�nm denote the incidence matrix of GðCÞ. vk 2 Rnm ðk ¼ 1; 2; 3Þ denote
the vector composed of the components of v 2 R3nm in xk-direction. Similarly, the external load vector

f 2 Rnd is divided into the set of vectors f k 2 Rndk . Define the matrices Dk 2 Rndk�nm by removing the jth row

in Jk from D, and then we see that F0ðPCÞ can be rewritten as
F0ðPCÞ ¼ fðv1; v2; v3ÞjDkvk þ f k ¼ 0 ðk ¼ 1; 2; 3Þg: ð31Þ
Alternatively, as a result of appropriate permutations of columns and rows of BT, the matrix
D1 O O
O D2 O
O O D3

24 35

can be obtained. Therefore, we have only to show Dk ¼ ndk ðk ¼ 1; 2; 3Þ.

There exists j1 2 Jk because jJkjP 1. Let Dðj1Þ 2 Rðnn
1Þ�nm denote the matrix obtained by removing

the j1th row from D, which is referred to as a truncated incidence matrix in the graph theory. For a con-

nected simple directed graph, it is well known that Dðj1Þ ¼ nn 
 1 (Chv�aatal, 1983, Chapter 19). Since any
row of Dk is a row of Dðj1Þ, all rows of Dk are linearly independent. �

As a consequence of Lemma 4.2 and Theorem 4.3, Assumption 3.1 guarantees that both ðPÞ and ðPCÞ
have optimal solutions for any f 2 Rnd . Assuming now that C does not satisfy Assumption 3.1(iv); i.e.,

Dk ¼ D ð9kÞ, we see rankD ¼ nn 
 1 (Chv�aatal, 1983), and hence F0ðPCÞ ¼ ; for a certain f 2 Rnd .

Accordingly, Assumption 3.1(iv) is a necessary condition for existence of solutions of ðPÞ and ðPCÞ.
The remainder of this section is devoted to the discussion of uniqueness of solution.
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Lemma 5.2 (Uniqueness of vII). Under Assumption 3.1, vII ¼ ðvII1 ; . . . ; vIInmÞ exists uniquely.

Proof. For i ¼ 1; . . . ; nm, vTi vi and kvik are strictly convex functions of vi 2 R3. Accordingly, ðPCÞ is a

minimization problem of a strictly convex function PCðvÞ over linear equality constraints, from which and
Theorem 4.3 it follows that ðPCÞ has the unique solution vII. �

Suppose that the ith member is in tensile state; i.e., vIIi 6¼ 0. It follows from (7) that r
1
i ðkvIIi kÞ exists

uniquely. From (29), we have kvIIi k ¼ riðcIIi Þ, which implies cIIi ¼ r
1
i ðkvIIi kÞ. By using (28), (29) can be

reduced to
hIIi ¼ 
 r
1
i ðkvIIi kÞ

"
þ l0i

# vIIi
kvIIi k

; ð32Þ
and we see that hIIi exists uniquely. Hence, vIIi 6¼ 0 is a sufficient condition for the uniqueness of hIIi . On the

contrary, suppose vIIi ¼ 0. Then, the inversion of (29) is not unique, which implies that the deformation uII is
not necessarily unique. Define C by removing all the members satisfying vIIi ¼ 0 from C. In accordance with

Definition 5.1, the graph GðCÞ is defined for C.

Lemma 5.3 (Uniqueness of uII). If

i(i) C satisfies Assumption 3.1(iv), and

(ii) GðCÞ has a subgraph which is a spanning tree of GðCÞ,

then uII of C is unique.

Proof. Eq. (32) implies that hIIi exists uniquely for any member of C, from which and Lemma 5.3(i) it
follows that the deformation of C is unique. From Lemma 5.3(ii), C has all the nodes of C, which concludes

the proof. �

Volokh and Vilnay (2000) showed that the tangent stiffness matrix is positive definite, if all the members

are in tension. The results of Lemmas 5.2 and 5.3 are also seen in Atai and Steigmann (1997). However, to

the authors� knowledge, no proof for finite deformation has been published based on the graph theory.
6. Physical interpretation of the complementary energy function

In this section, we investigate the physical meaning of the obtained complementary energy function in

ðPCÞ. Let x0 2 Rnd and b0i 2 R3 ði ¼ 1; . . . ; nmÞ denote the vectors of nodal coordinates corresponding to

unconstrained degrees and support degrees, respectively. Similarly, recall that the vectors at the deformed

state are denoted by x0 þ u 2 Rnd and bi 2 R3 ði ¼ 1; . . . ; nmÞ. Note that x0, b0i , and bi are specified. For

i ¼ 1; . . . ; nm, ûui ¼ bi 
 b0i 2 R3 denotes the prescribed displacements of the support connected to the ith
member.

Under the assumption of small strain and small rotation, the complementary energy function PC
LIN for

trusses is well known to be given by
PC
LINðvÞ ¼

Xnm
i¼1

wC
i ðviÞ 


Xnm
i¼1

ûuTi vi; ð33Þ
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where wC
i defined by (25) is the complementary strain energy of the ith member. On the other hand, al-

lowing finite deformation, we have shown in Section 4 that the complementary energy for cable networks

can be written as
PCðvÞ ¼
Xnm
i¼1

~wwC
i ðviÞ 


Xnm
i¼1

ûuTi vi; ð34Þ
where
~wwC
i ðviÞ ¼ wC

i ðviÞ þ l0i kvik 
 ðBix
0 
 b0i Þ

Tð
viÞ: ð35Þ

It is interesting that the complementary work ~wwC

i for cable member defined by (35) seems to contain the

complementary strain energy wC
i for truss member in the small deformation theory and the additional

terms. In this section, It will be shown that (35) is derived by using the framework of complementary work
in finite deformation theory.

Consider a cable member in three-dimensional space as illustrated in Fig. 3, where node (a) is fixed at

x ¼ 0, and the external force si 2 R3 is applied at node (b). Let h0i 2 R3 denote the nodal coordinate of node

(b) at CI, which corresponds to si ¼ 0. ri 2 R3 denotes the vector of displacements of node (b).

The infinitesimal increments of work d~wwi done by dri and complementary work d~wwC
i done by dsi,

respectively, are written as
d~wwi ¼ sTi dri; ð36Þ

d~wwC
i ¼ rTi dsi: ð37Þ
The hysteresis independence of deformation verifies to choose a loading scenario, for example, as
siðqÞ ¼ ŝsiq ð06 q6 1Þ; ð38Þ

where ŝsi 2 R3 is a constant vector, and q increases monotonically from q ¼ 0 to 1. By using dsiðqÞ ¼ ŝsidq
and (37), we obtain
~wwC
i ¼

Z 1

0

riðqÞTŝsi dq: ð39Þ
For q ð06 q6 1Þ, let hiðqÞ 2 R3 and ciðqÞ denote the nodal coordinate of node (b) and the member

elongation, respectively, at the equilibrium state corresponding to ŝsiq; i.e.,
hiðqÞ ¼ h0i þ riðqÞ; ciðqÞ ¼ khiðqÞk 
 l0i : ð40Þ

Evidently, hiðqÞ is in direction of siðqÞ, from which and (38) it follows that
hiðqÞTŝsi ¼ khiðqÞkkŝsik ¼ ðciðqÞ þ l0i Þkŝsik: ð41Þ
Fig. 3. Cable member.
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By substituting (40) and (41) into (39), we obtain
~wwC
i ¼

Z 1

0

ðhiðqÞ 
 h0i Þ
T
ŝsi dq ¼

Z 1

0

ðciðqÞ þ l0i Þkŝsikdq 

Z 1

0

h0
T

i ŝsi dq ¼ wC
i ðŝsiÞ þ l0i kŝsik 
 h0

T

i ŝsi; ð42Þ
which is the complementary work of cable member allowing the finite deformation.

For the general formulation of complementary energy of cable network (34), we can show that (35) is
induced naturally from complementary work (42). Observing that no complementary work is done during

rigid-body translation of member without rotation, we can fix one of the nodes of the ith member and

assign ri, hi, and h0i as
ri ¼ Biu
 ûui; hi ¼ Biðx0 þ uÞ 
 bi; h0i ¼ Bix
0 
 b0i :
Eq. (29) implies that, for each i ¼ 1; . . . ; nm, the direction of vIIi is opposite to hIIi ¼ Biðx0 þ uIIÞ 
 bi, which
allows to assign as ŝsi ¼ 
vi. As a consequence, (42) leads to (34) along with (35). It should be emphasized

that PCðvÞ derived by duality theory has been also derived from the concept of complementary work

allowing the finite deformation.
In the case of small deformation, we may assume that h0i and ŝsi have almost the same direction, and

kh0i k ’ l0i . Accordingly, h0
T

i ŝsi ’ l0i kŝsik is obtained, from which (42) can be approximated as ~wwC
i ’ wC

i ðŝsiÞ,
Thus, the result of (42) agrees with the well-known complementary work in the small deformation theory.
7. Illustrative example

Consider the simplest example of cable network with single-degree of freedom as shown in Fig. 4, where
nm ¼ 2, and nd ¼ 1. Suppose that both members have the same extensional stiffness k and initial unstressed

length l0. The external force f satisfying 0 < f < 2kl0 is applied at node (c).

As shown in Section 4, the complementary energy function PC in (26) is different in the second term from

PC
LIN in small deformation theory. In this example, we will illustrate that the second term is necessary in

finite deformation theory even without rotation of members. To this end, the reference state is given such

that node (c) is located at the origin; i.e., x0 ¼ 0, b1 ¼ 0, and b2 ¼ 2l0. The minimization problem of

complementary energy will be analytically solved below, and the result will be compared with the solution

to minimum total potential energy.
The problems of minimum total potential energy and complementary energy are obtained as
ðPÞ : min PðuÞ ¼ w1ðc1Þ þ w2ðc2Þ 
 fu
s:t: c1 ¼ juj 
 l0; c2 ¼ ju
 2l0j 
 l0;

�
ð43Þ
ðPCÞ : min PCðv1; v2Þ ¼
1

2k
ðv21 þ v22Þ þ l0ðjv1j þ jv2jÞ 
 2l0v2

s:t: v1 þ v2 þ f ¼ 0;

)
ð44Þ
where wiðciÞ is defined by (8). The internal forces v1 and v2 are defined as shown in Fig. 5.
Fig. 4. The deformed state of a single-degree-of-freedom cable network.
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From the equilibrium equation v1 þ v2 þ f ¼ 0 and the condition f > 0, we obtain v1 6 0 or v2 6 0. To

solve ðPCÞ analytically, we consider the following three cases:

(i) v1 6 0, v2 6 0: By using the equilibrium equation, we can eliminate v1 from PC as
P

P

P

Cðv1; v2Þ ¼
1

k
v2

�

 kl0
�


 f
2

��2
þ f 2

2k

 1

k
kl0
�


 f
2

�2

þ l0f :
Since kl0 
 f =2 > 0 and v2 6 0, we see that the minimum objective value is PCð
f ; 0Þ ¼ f 2=2k þ l0f .

(ii) v1 P 0, v2 6 0: PC is reduced to
Cðv1; v2Þ ¼
1

k
v2

�

 2kl0
�


 f
2

��2
þ f 2

2k

 1

k
2kl0
�


 f
2

�2


 l0f :
From v2 ¼ 
f 
 v1 and v1 P 0, we obtain v2 6 
 f . It follow from 2kl0 
 f =2 > 0 that PC decreases

strictly on v2 6 
 f , which implies that the minimum objective value is PCð0;
f Þ ¼ f 2=2k þ 3l0f .

(iii) v1 6 0, v2 P 0: PC is reduced to
Cðv1; v2Þ ¼
1

k
v2

�
þ f

2

�2

þ f 2

4k
þ l0f :
The condition 
f =2 < 0 implies that the minimum value of PC is PCð
f ; 0Þ ¼ f 2=2k þ l0f .
The results of (i)–(iii) imply that the solution of ðPCÞ is ðvII1 ; vII2 Þ ¼ ð
f ; 0Þ, which is easily verified to

correspond to the equilibrium state. On the other hand, the solution of ðPÞ is uII ¼ f =k þ l0, which is

compatible to the solution of ðPCÞ. The optimal values of P and PC satisfy
PðuIIÞ ¼ 1

2
keII

2

1 
 fuII ¼ 
 f 2

2k

 l0f ¼ 
PCðvII1 ; vII2 Þ;
which illustrates the assertion of Theorem 4.3(i).

For comparison purpose, consider the classical complementary energy PC
LIN. From (33), we obtain
PC
LINðv1; v2Þ ¼

1

2k
ðv21 þ v22Þ 
 2l0v2: ð45Þ
By using the equilibrium equation v1 þ v2 þ f ¼ 0, (45) is reduced to
PC
LINðv2Þ ¼

1

k
v2

�

 kl0
�


 f
2

��2
þ f 2

2k

 1

k
kl0
�


 f
2

�2

;

which leads to the erroneous solution v2 ¼ kl0 
 f =2. Alternatively, consider the case such that x0 ¼ l0 and
ûu1 ¼ ûu2 ¼ 0, which agrees with the assumption of small deformation. Then, (33) is reduced to
PC
LINðv2Þ ¼

1

k
ðv21 þ v22Þ;
which leads the solution ðv1; v2Þ ¼ ð
f =2;
f =2Þ; i.e., the compatible solution for a truss is obtained.



4452 Y. Kanno, M. Ohsaki / International Journal of Solids and Structures 40 (2003) 4437–4460
8. Remarks on the Lagrangian duality

The (extended) Lagrangian dual problem has been developed for mathematical programming problems

(Mangasarian, 1969; Rockafellar, 1970) as well as variational problems (Ekeland and Tem�aam, 1976). In
this section, ðPCÞ is revisited by using the framework of Lagrangian duality theory. In addition, we present

the unified view point for several complementary energy principles ever addressed in the literature for finite

dimensional structures. It is interesting that the variety of approaches is understood as the different for-

mulations of Lagrangian. It is remarkable that our approach does not have any difficulty or ambiguity of

inversion of constitutive law.

We start with ðPÞ; i.e., the Lagrangian of ðPÞ can be defined as
LPðc; u; kÞ ¼
Xnm
i¼1

wiðciÞ 
 f Tu

Xnm
i¼1

ki ci
"

þ l0i 
 kBiðx0 þ uÞ 
 bik
#
;

where ki ði ¼ 1; . . . ; nmÞ are the Lagrangian multipliers, and k ¼ ðkiÞ 2 Rnm. Note that LP corresponds to the

Hu–Washizu functional, which is well-known in the continuum mechanics. We see that ðPÞ can be alter-

natively written as
PðLPÞ : min
c;u

supfLPðc; u; kÞjk 2 Rnmg; ð46Þ
where
supfLPðc; u; kÞjk 2 Rnmg ¼
Pnm

i¼1 wiðciÞ 
 f Tu ðci þ l0i 
 kBiðx0 þ uÞ 
 bik; i ¼ 1; . . . ; nmÞ;
þ1 ðotherwiseÞ:

�

The Lagrangian dual problem is obtained by replacing min-sup with max-inf in (46); i.e.,
DðLPÞ : max
k

inffLPðc; u; kÞjc 2 Rnm ; u 2 Rndg: ð47Þ
Unfortunately, LP is a nonconvex and nonsmooth function of u. Accordingly, it is difficult to calculate the

infimum in (47) explicitly, and there exists the duality gap between PðLPÞ and DðLPÞ generally. This ex-
plains, from the view point of duality theory, that the standard approach using DðLPÞ fails to derive the

truly complementary energy principle.
Consider ðP Þ instead of ðPÞ. By using the self-duality of second-order cone introduced in (1), the

Lagrangian of ðP Þ can be defined as
LP ðy; u; q; vÞ ¼

Pnm
i¼1

1

2
kiy2i 
 f Tu


Xnm
i¼1

qiðyi þ l0i Þ



Pnm

i¼1 v
T
i ½Biðx0 þ uÞ 
 bi� ðqi P kvik; i ¼ 1; . . . ; nmÞ;

þ1 ðotherwiseÞ;

8>>><>>>:

where q ¼ ðqiÞ 2 Rnm and v ¼ ðv1; . . . ; vnmÞ 2 R3nm are the Lagrangian multipliers. Indeed, ðP Þ is equivalent
to
PðLP Þ : min
y;u

supfLP ðy; u; q; vÞjq 2 Rnm ; v 2 R3nmg; ð48Þ
which validates that LP can be regarded as the extended Lagrangian of ðP Þ (Ekeland and Tem�aam, 1976). It

is remarkable to note that LP is a linear function of u, even if ðP Þ is a nonlinear programming problem. The

Lagrangian dual problem is now defined as
DðLP Þ : max
q;v

inffLP ðy; u; q; vÞjy 2 Rnm ; u 2 Rndg: ð49Þ
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Note that LP is a convex and smooth function with respect to y and u, from which the problem (49) is

reduced to
DðLP Þ : max LP ðy; u; q; vÞ
s:t: ryLP ¼ 0; ruLP ¼ 0; qi P kvik ði ¼ 1; . . . ; nmÞ:

�
ð50Þ
Here, ryLP ¼ 0 is reduced to
qi ¼ kiyi ði ¼ 1; . . . ; nmÞ: ð51Þ
Eq. (51) is the constitutive law in terms of member elongation and axial force, which is analogous to that in

terms of Green–Lagrange strain tensor and the second Piola–Kirchhoff stress tensor used in the continuum

mechanics. It is obvious that (51) has unique inversion. By using this property, we can eliminate yi from the

objective function of DðLP Þ. Similarly, u can be eliminated by using ruLP ¼ 0, because LP is a linear

function with respect to u. Thus, DðLP Þ can be reformulated into the form without y and u, which is the
expected property for the truly complementary energy principle. Actually, it is easy to see that DðLP Þ
coincides with ðDÞ in Section 9.2, which is equivalent to ðPCÞ (see Lemma 9.2).

In Section 4, we derived ðDSÞ by using the well-established results about the duality of SOCP. The series

of lemmas and theorem in Section 4 may also be obtained by using the results of (extended) Lagrangian

duality theory (Ekeland and Tem�aam, 1976, Chapter VI). The nice separable duality property of SOCP can

be understood from the characteristics of the Lagrangian such that LP is a linear function of u with the

nonlinear subsidiary conditions of the Lagrangian multipliers. By utilizing this type of Lagrangian, the

authors derived the necessary and sufficient conditions for optimality of the structural optimization
problem of trusses under the fundamental frequency constraints (Kanno and Ohsaki, 2001).

Letting ri ¼ Biu
 ûui 2 R3 and h0i ¼ Bix
0 
 b0i 2 R3 ði ¼ 1; . . . ; nmÞ, we see ci ¼ kri þ h0i k 
 l0i . Define a

function wr
i as
wr
i ðriÞ ¼ wiðkri þ h0i k 
 l0i Þ: ð52Þ
Then, ðPÞ is alternatively written as
PðLrÞ : min
Pnm
i¼1

wr
i ðriÞ 
 f Tu

s:t: ri ¼ Biu
 ûui ði ¼ 1; . . . ; nmÞ;

9=; ð53Þ
along with the Lagrangian
Lrðr; u; sÞ ¼
Xnm
i¼1

wr
i ðriÞ 
 f Tu


Xnm
i¼1

sTi ðri 
 Biuþ ûuiÞ; ð54Þ
where si 2 R3 ði ¼ 1; . . . ; nmÞ are the Lagrangian multipliers, s ¼ ðs1; . . . ; snmÞ 2 R3nm, and r ¼ ðr1; . . . ; rnmÞ 2
R3nm. Mikkola (1989) investigated Lr for truss structures. For continuum, this type of Lagrangian can be

found in various literature (see, e.g., Koiter, 1976, (6.4)). In connection with the Lagrangian dual problem,

we see that Lr attains inffLrjr 2 R3nm ; u 2 Rndg only if
ruLr ¼ 0; ð55Þ

rriL
r ¼ 0 ði ¼ 1; . . . ; nmÞ ð56Þ
are satisfied. Eq. (56) is reduced to
si ¼
owr

i ðriÞ
ori

ði ¼ 1; . . . ; nmÞ: ð57Þ
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For the ith member, (57) is the constitutive law in terms of the nodal displacement vector and internal force

vector, which is analogous to that relating the displacement gradient and the first Piola–Kirchhoff stress

tensor in the case of continuum. Assuming that (57) has an inversion, we can define the function bwwC
i ðsiÞ only

in terms of si as
bwwC
i ðsiÞ ¼ sTi ri 
 wr

i ðriÞ; ð58Þ

which is the Legendre transformation of wr

i . By substituting (55) and (58) into (54), we can formulate the

dual problem of PðLrÞ as
bDDðLrÞ : max 

Pnm
i¼1

ŵwC
i ðsiÞ 


Pnm
i¼1

ûuTi si

s:t:
Pnm
i¼1

BT
i si 
 f ¼ 0;

9>>=>>; ð59Þ
which corresponds to the classical Lagrangian dual problem (Mangasarian, 1969). Therefore, the strong

duality does not hold between PðLrÞ and bDDðLrÞ generally. Since Lr is a linear function of u, the constraints
of bDDðLrÞ contain only stress components si as variables. However, as clarified by Koiter (1976), (57) does

not have a unique inversion in general. Hence, the objective function of bDDðLrÞ is a multi-valued function

(see Mikkola (1989) for the case of trusses). Even in the case of cable network, (57) has the multi-valued

inversion at si ¼ 0. This is the difficulty of approach based on the Legendre transformation with the

standard type of Lagrangian.
Recently, by using the (Fenchel�s) conjugate transformation, Atai and Steigmann (1997) proposed the

minimum principle of complementary energy for cable networks. For the purpose of comparison, we show

that the same result can be obtained based on the Lagrangian duality approach. In Atai and Steigmann

(1997), a cable network is modeled as an assemblage of one-dimensional continuum, but they restricted

themselves to the case where the external loads are applied only at nodes. Accordingly, we can discuss the

finite dimensional model of cable networks without loss of generality.

In order to formulate bDDðLrÞ, we used the necessary conditions (55) and (56) for infimum of Lr. On the

contrary, by calculating the infimum directly, we obtain
inffLrðr; u; sÞjr 2 R3nm ; u 2 Rndg

¼
Xnm
i¼1

inffsTi ri 
 wr
i ðriÞjri 2 R3g þ inf

Xnm
i¼1

BT
i si

 8<: 
 f

!T

u

������u 2 Rnd

9=;

Xnm
i¼1

ûuTi si

¼ 

Pnm
i¼1

w�
i ðsiÞ 


Pnm
i¼1

ûuTi si
Pnm
i¼1

BT
i si 
 f ¼ 0

� �
;


1 ðotherwiseÞ;

8<: ð60Þ
where w�
i is the (Fenchel�s) conjugate transformation of wr

i defined by (Rockafellar, 1970)
w�
i ðsiÞ ¼ supfsTi ri 
 wr

i ðriÞjri 2 R3g: ð61Þ

By using (60) and (61), the (extended) Lagrangian dual problem of PðLrÞ is obtained as
DðLrÞ : max 

Pnm
i¼1

w�
i ðsiÞ 


Pnm
i¼1

ûuTi si

s:t:
Pnm
i¼1

BT
i si 
 f ¼ 0:

9>>=>>; ð62Þ
This formulation is similar to that of Atai and Steigmann (1997), but they used the deformation gradient
hi ¼ Biðx0 þ uÞ 
 bi 2 R3 instead of displacement gradient ri. Note that the strong duality holds between
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PðLrÞ and DðLrÞ if wr
i is convex (Rockafellar, 1970). Otherwise, there exists positive duality gap generally,

and an optimal solution of DðLrÞ does not satisfy the equilibrium conditions.

Note that w�
i is always a (single-valued) function of si. However, this does not directly imply that w�

i can

be written explicitly in a simple algebraic form only in terms of si. Unfortunately, Atai and Steigmann
(1997) did not present the explicit formulation of complementary energy.

By comparing LP, LP , and Lr, we see that our approach presented in this paper is independent of the

concepts ever addressed. Namely, the ambiguity in inversion of constitutive law is successfully avoided.

Moreover, the complementary energy has been obtained explicitly, which is the practical advantage of our

approach.
9. Proofs of lemmas

9.1. Proof of Lemma 3.3

Lemma 3.3 is shown by converting ðP Þ to ðPSÞ.

Proof. Introducing the auxiliary variables ti ði ¼ 1; . . . ; nmÞ, we can reformulate ðP Þ as
min /P
Sðu; tÞ ¼

Pnm
i¼1

ti 
 f Tu

s:t: ti P
ki
2
y2i ; yi þ l0i P kBiðx0 þ uÞ 
 bik ði ¼ 1; . . . ; nmÞ:

9>>=>>; ð63Þ
We easily see that
ti P
ki
2
y2i () ti

2ki
þ 1P

ti
2ki


 1

yi

 !�����
�����; ð64Þ
which implies that the problem (63) is reduced to ðPSÞ. An optimal solution of the problem (63) satisfies (64)

in equality for each i ¼ 1; . . . ; nm, from which Lemma 3.3(i) follows. Lemma 3.3(ii) is immediately obtained

from the assertion (i). �

9.2. Proof of 4.1

Consider the following problem:
ðDÞ : max /Dðq; vÞ ¼ 

Pnm
i¼1

q2i
2ki



Pnm
i¼1

l0i qi 

Pnm
i¼1

ðBix
0 
 biÞTvi

s:t:
Pnm
i¼1

BT
i vi þ f ¼ 0; qi P kvik ði ¼ 1; . . . ; nmÞ;

9>>=>>; ð65Þ
where independent variables are q ¼ ðqiÞ 2 Rnm and v ¼ ðv1; . . . ; vnmÞ 2 R3nm. We show Lemma 4.1 by two
steps; i.e., we investigate the relationship between ðDSÞ and ðDÞ, and between ðDÞ and ðPCÞ. The following
lemma provides us with the first step:

Lemma 9.1 (Relation between ðDSÞ and ðDÞ). ð�qq;�vvÞ is an optimal solution of ðDÞ if and only if ð�qq;�vv; �nnÞ satis-
fying
�nni0 ¼
�qq2i
4ki

þ ki; �nni1 ¼ 
 �qq2i
4ki

þ ki; �nni2 ¼ 
�qqi ði ¼ 1; . . . ; nmÞ; ð66Þ
is an optimal solution of ðDSÞ. Moreover, the optimal objective values of ðDÞ and ðDSÞ coincide.
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Proof. By using the constraint conditions of ðDSÞ

ni0 þ ni1 ¼ 2ki; ð67Þ

ni0 P kðni1; ni2ÞTk; ð68Þ

qi þ ni2 ¼ 0; ð69Þ

and introducing new variables tCi , we can eliminate ðni0; ni1; ni2Þ from ðDSÞ. (67) verifies that ni0 and ni1 are

rewritten as
ni0 ¼
tCi
2
þ ki; ni1 ¼ 
 tCi

2
þ ki: ð70Þ
By using (69) and (70), (68) is reduced to
tCi
2
þ ki P 
 tCi

2
þ ki


qi

 !�����
�����() tCi P

q2i
2ki

; ð71Þ
and the first term of /D
S in ðDSÞ is reduced to
Xnm

i¼1

ð
ni0 þ ni1Þ ¼ 

Xnm
i¼1

tCi : ð72Þ
From (71) and (72), ðDSÞ is reformulated as
max 

Pnm
i¼1

tCi 

Pnm
i¼1

l0i qi 

Pnm
i¼1

ðBix
0 
 biÞTvi

s:t:
Pnm
i¼1

BT
i vi þ f ¼ 0;

tCi P
q2i
2ki

; qi P kvik ði ¼ 1; . . . ; nmÞ:

9>>>>>>>=>>>>>>>;
ð73Þ
Observing that the objective function is a strictly decreasing function of tCi , any optimal solutions of the

problem (73) satisfy
tCi ¼ q2i =2ki ði ¼ 1; . . . ; nmÞ: ð74Þ

Therefore, the problem (73) is equivalent to ðDÞ. Conditions (66) in Lemma 9.1 can be obtained from (69),

(70) and (74). �

The following lemma relates optimal solutions v of ðPCÞ and ðq; vÞ of ðDÞ:

Lemma 9.2 (Relation between ðDÞ and ðPCÞ). �vv is an optimal solution of ðPCÞ if and only if ð�qq;�vvÞ satisfying

�qqi ¼ k�vvik ði ¼ 1; . . . ; nmÞ; ð75Þ
is an optimal solution of ðDÞ, where PCð�vvÞ ¼ 
/Dð�qq;�vvÞ.

Proof. For an optimal solution ð�qq;�vvÞ of ðDÞ, (75) is satisfied because 
l0i qi decreases strictly in the feasible

region of ðDÞ. Accordingly, ðDÞ is reduced to ðPCÞ by converting the constraints qi P kvik ði ¼ 1; . . . ; nmÞ to
the equalities qi ¼ kvik, and by changing the sign of the objective function to transform maximization to

minimization, which completes the proof. �

Proof of Lemma 4.1. Lemma 4.1 follows from Lemmas 9.1 and 9.2 immediately. �
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10. Proof of Theorem 4.3

The discussion in this section is based on the framework of SOCP duality (Theorem 2.2). The following

two lemmas should be prepared to prove Theorem 4.3:

Lemma 10.1 (Strong duality of ðPSÞ and ðDSÞ). Under Assumption 3.1,

i(i) ðPSÞ and ðDSÞ have optimal solutions ð�yy; �uu;�ttÞ and ð�qq;�vv; �nnÞ, respectively, and /P
Sð�qq;�vv;�ttÞ ¼ /D

S ð�qq;�vv; �nnÞ.
(ii) feasible solution ð�yy; �uu;�ttÞ and ð�qq;�vv; �nnÞ of ðPSÞ and ðDSÞ, respectively, are optimal solutions if and only if

they satisfy
�qqið

�nni0

/P
�yyi þ l0i Þ þ �vvTi ½Biðx0 þ �uuÞ 
 bi� ¼ 0 ði ¼ 1; . . . ; nmÞ; ð76Þ

�tti
2ki

 
þ 1

!
þ �nni1

�tti
2ki

 

 1

!
þ �nni2�yyi ¼ 0 ði ¼ 1; . . . ; nmÞ: ð77Þ
Proof. Assumption 3.1 guarantees Lemma 4.2(i), from which it is not difficult to see that the matrices Ai

ði ¼ 1; . . . ; 2nmÞ defined by (17) satisfy Assumption 2.1(i).

Let F0ðPSÞ � R2nmþnd and F0ðDSÞ � R7nm denote the sets of interior-feasible solutions of ðPSÞ and ðDSÞ,
respectively. By using Lemma 4.2(ii), we shall show that Assumption 3.1 guarantees Assumption 2.1(ii) is

satisfied. By using (64), we obtain
F0ðPSÞ ¼ ðy; u; tÞ ti
�����

>
1

2
kiy2i ; yi þ l0i > kBiðx0 þ uÞ 
 bik ði ¼ 1; . . . ; nmÞ

�
;

where both ti and yi are not bounded from above. Therefore, F0ðPSÞ 6¼ ; is always satisfied. From (69)–

(71), we obtain
F0ðDSÞ ¼ ðq; v; nÞ
Xnm
i¼1

BT
i vi

�����
(

þ f ¼ 0; ð69Þ; ð70Þ; tCi >
q2i
2ki

; qi > kvik ði ¼ 1; . . . ; nmÞ
)
;

where both tCi and qi are not bounded from above. Accordingly, F0ðPCÞ 6¼ ; implies F0ðDSÞ 6¼ ;, from
which and Lemma 4.2(ii) it follows that Assumption 3.1 guarantees F0ðDSÞ 6¼ ;.

Consequently, the assumption in Lemma 10.1 is equivalent to Assumption 2.1. Lemma 10.1(i) follows

from Theorem 2.2(i) immediately. By substituting (16) and (19) into (5), we obtain (76) and (77). Therefore,

Lemma 10.1(ii) follows from Theorem 2.2(ii)b. �

As a consequence of Lemma 10.1, the following result about the duality between ðP Þ and ðDÞ is obtained:

Lemma 10.2 (Strong duality of ðP Þ and ðDÞ). Under Assumption 3.1,

i(i) ðPÞ and ðDÞ have optimal solutions ð�yy; �uuÞ and ð�qq;�vvÞ, respectively, and
ð�qq;�vvÞ ¼ /Dð�qq;�vvÞ: ð78Þ

(ii) ð�yy; �uuÞ and ð�qq;�vvÞ are optimal solutions of ðP Þ and ðDÞ, respectively, if and only if they satisfy
�qqi ¼ ki�yyi ði ¼ 1; . . . ; nmÞ; ð79Þ
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Xnm
i¼1

BT
i �vvi þ f ¼ 0; ð80Þ

�yyi þ l0i P kBiðx0 þ �uuÞ 
 bik ði ¼ 1; . . . ; nmÞ; ð81Þ

�qqi P k�vvik ði ¼ 1; . . . ; nmÞ; ð82Þ

�qqið�yyi þ l0i Þ þ �vvTi ½Biðx0 þ �uuÞ 
 bi� ¼ 0 ði ¼ 1; . . . ; nmÞ: ð83Þ
Proof

i(i) Recall that we have investigated the relation between ðPÞ and ðPSÞ in Lemma 3.3, and the relation be-

tween ðDSÞ and ðDÞ was given in Lemma 9.1. As a consequence of these lemmas, Lemma 10.1(i) follows

from Lemma 10.1(i).

(ii) It follows from Lemmas 3.3, 9.1, and 10.1 that ð�yy; �uuÞ and ð�qq;�vvÞ are optimal solutions of ðP Þ and ðDÞ,
respectively, if and only if feasible solutions ð�yy; �uu;�ttÞ and ð�qq;�vv; �nnÞ of ðPSÞ and ðDSÞ satisfy (13), (66),
(76) and (77). Therefore, we only have to show that the conditions (13), (66) and (77) are equivalent

to (79). By substituting (13) and (66) into the left-hand side of (77), we obtain
�nni0
�tti
2ki

 
þ 1

!
þ �nni1

�tti
2ki

 

 1

!
þ �nni2�yyi ¼

�qq2i
4ki

 
þ ki

!
�yy2i
4

 
þ 1

!
þ
 


 �qq2i
4ki

þ ki

!
�yy2i
4

 

 1

!
þ ð
�qqiÞ�yyi

¼ �qq2i
2ki

þ ki�yy2i
2


 �qqi�yyi ¼
1

2ki
ðki�yyi 
 �qqiÞ2;
which completes the proof. �
Note that (79)–(83) can be also obtained by using the KKT conditions for convex nonsmooth optimi-

zation problems (Rockafellar, 1970), where (83) corresponds to the complementarity condition.

Proof of Theorem 4.3. It follows from Lemma 3.2, Lemma 9.2 and Lemma 10.2(ii) that ðcII; uIIÞ and vII are
optimal solutions of ðPÞ and ðPCÞ, respectively, if and only if ðcII; uIIÞ, �yy, and ð�qq; vIIÞ defined by (11) and

(75) satisfy (6) and (79)–(83). After simple manipulation, the latter condition is reduced to
ð11Þ; ð27Þ; ð28Þ; ð30Þ; ð84Þ

�qqi ¼ ki�yyi ¼ kvIIi k ði ¼ 1; . . . ; nmÞ; ð85Þ

�qqið�yyi þ l0i Þ þ vII
T

i hIIi ¼ 0 ði ¼ 1; . . . ; nmÞ: ð86Þ
It suffices to show that (29) is equivalent to (11), (85) and (86).

For 
l0i 6 cIIi < 0, (11) implies �yyi ¼ 0, from which and (85) we obtain vIIi ¼ 0; i.e., (29) is satisfied. Al-
ternatively, for cIIi P 0, (11) implies �yyi ¼ cIIi . It follows from (27) and (28) that �yyi þ l0i ¼ khIIi k. By substi-

tuting this identity into (85) and using (86), we obtain kvIIi kkh
II
i k þ vII

T

i hIIi ¼ 0, which leads to
vIIi ¼ 
kvIIi k
hIIi

khIIi k
; ð87Þ
where hIIi 6¼ 0 because of cIIi P 0. It follows from (7) and (85) that kvIIi k ¼ kicIIi ¼ riðcIIi Þ. Consequently, the
triple ðcIIi ; vIIi ; h

II
i Þ satisfies (29) if (11), (85) and (86) hold. Conversely, it is easy to see that (11), (85) and (86)

are satisfied if (29) holds. �



Y. Kanno, M. Ohsaki / International Journal of Solids and Structures 40 (2003) 4437–4460 4459
11. Conclusions

The minimum principle of complementary energy has been established for cable networks in geomet-

rically nonlinear elasticity.
The minimization problem ðPÞ of total potential energy for cable networks has been first formulated

allowing finite deformation, and its SOCP formulation (PS) has been presented. Based on the duality of a

pair of primal–dual SOCP problems, the minimum principle of complementary energy is established; i.e.,

the minimization problem of complementary energy ðPCÞ is simply derived from the dual SOCP problem

(DS) of (PS). From the strong duality of SOCP, we have shown the strong duality theorem between ðPÞ and
ðPCÞ, which guarantees that an optimal solution of ðPCÞ corresponds to a set of internal force vectors at the

equilibrium state.

It is known that, in general, the complementary energy function expressed only by stress components
cannot be uniquely determined, and minimum principle cannot be established even if the equilibrium state

is stable. On the contrary, it has been shown in this paper that cable networks have the unique comple-

mentary energy function and the minimum principle of complementary energy can be established irre-

spective of the stability of equilibrium state. Therefore, the presented principle may be actually useful in

practical application such as the force method. Moreover, the obtained complementary energy has been

interpreted physically based on the concept of complementary work in finite deformation.

The existence and uniqueness of the solution to the minimum complementary energy have been inves-

tigated. Based on the graph theory, we have presented the sufficient condition for existence of the solution
to the problem of minimum complementary energy allowing large deformation. This condition is related to

the topology and the support condition of cable networks, but is independent of the geometry of structures

and the property of external loads. From the strict convexity of the complementary energy function, the

sufficient condition for the uniqueness of equilibrium configuration of a cable network has also been

presented, which is also independent of its geometry and magnitudes of axial forces.

Existing approaches to complementary energy principle have been compared from the unified view point

of Lagrangian duality. It has been also shown that ðDÞ can be obtained based on the framework of La-

grangian duality by utilizing the self-dual property of second-order cone, which has clarified how our
approach can avoid the difficulties of coupling of stress and displacement and uniqueness of inversion of

constitutive law.
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