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Abstract

The minimum principle of complementary energy is established for cable networks involving only stress components
as variables in geometrically nonlinear elasticity. It is rather amazing that the complementary energy always attains
minimum value at the equilibrium state irrespective of the stability of cable networks, contrary to the fact that only the
stationary principles have been presented for elastic trusses and continua even in the case of stable equilibrium state. In
order to show the strong duality between the minimization problems of total potential energy and complementary
energy, the convex formulations of these problems are investigated, which can be embedded into a primal-dual pair of
second-order cone programming problems. The existence and uniqueness of solution are also investigated for the
minimization problem of complementary energy.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the various variational principles in static mechanics, the complementary energy principle in
large deformation elasticity has raised several interesting discussions since the first contribution by Hel-
linger (1914). Under assumption of small deformation, it is well known that the complementary energy
principle contains only stress components as independent variables, whereas the displacements are inde-
pendent variables in the total potential energy principle. This beautiful symmetric property, however, seems
to break if we allow large rotation, because the well-known Hellinger—Reissner principle involves the un-
known displacement as well as the second Piola—Kirchhoff stress. Coupling of the unknown stress and
displacement prevents us from development of force method allowing finite rotation. From both theoretical
and practical points of view, it has been a challenging task to formulate the complementary energy principle
only in terms of stress components.
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Koiter (1976) made the important contribution through the excellent survey of related works until 70s.
The complementary energy formulation using the first Piola—Kirchhoff stress along with the deformation
gradient was presented by Levinson (1965) and Zubov (1970) based on the Legendre transformation. It
may be possible to eliminate the deformation gradient from the Zubov’s formulation, if the deformation
gradient can be expressed only in terms of the first Piola—Kirchhoff stress; i.e., if there exists an inversion of
constitutive law that defines the first Piola—Kirchhoff stress as a function of displacement gradient. Koiter
(1976) proved that this inversion always exists, but multi-valued in usual case. From the mathematically
rigorous definition, the lack of uniqueness means that there exists no inversion of constitutive law. How-
ever, we obey Koiter’s terminology throughout this paper; i.e., we say that there exits a multi-valued in-
version. He also presented the necessary condition for unique inversion such that the strain energy is a
strictly convex and coercive function with respect to the displacement gradient. Even if this condition holds,
it is not easy to express the complementary energy in an explicit form.

For many cases of small strain and finite deformation, the assumption of semi-linear material is prac-
tically acceptable, where the Biot stress is assumed to be a linear function of the right extensional strain. In
the case of isotropic semi-linear material, Koiter (1976) presented the explicit expression of complementary
energy function, which involves the Biot stress and the first Piola—Kirchhoff stress. Since these two stresses
are related through the rotation, the subsidiary conditions of complementary energy principle may involve
the unknown rotation. Allowing the multi-valued inversion of stress—strain relation, Mikkola (1989) pre-
sented the explicit form of complementary energy of trusses only in terms of internal force vectors.
However, Mikkola’s complementary energy function cannot be determined uniquely without information
of unknown axial forces at the equilibrium state.

It should be noted that the stability of equilibrium state does not always mean the local minimum of the
complementary energy (see, e.g., the counter example (Koiter, 1976)). Therefore, only the stationary
principle of complementary energy has been discussed in the finite deformation theory for general struc-
tures such as elastic continuum, trusses, beams, etc.

Recently, the concepts of convex analysis have been applied to this problem; i.e., the complementary
energy is defined by the (Fenchel’s) conjugate transformation, instead of the Legendre transformation, of
the strain energy function in terms of deformation gradient. In accordance with this definition, the com-
plementary energy is now uniquely determined. However, the stationary principle using such a comple-
mentary energy is valid only if the strain energy is a convex function of deformation gradient. Usually, this
condition is not satisfied, even in the case of linear material. Atai and Steigmann (1997) presented the
relaxed strain energy of cable member as the lower convex envelope of strain energy of truss member, and
formulated the minimum principle of complementary energy for cable networks by using the conjugate
transformation. Unfortunately, they did not formulate the complementary energy function explicitly.

Observing that the total potential energy attains local minimum at the stable equilibrium state, it is
natural to regard the minimization problem of total potential energy as a (finite or infinite dimensional)
optimization problem. Under the assumption of small deformation and linear elastic material, the mini-
mization problem of total potential energy can be formulated as a convex quadratic programming (QP)
problem. Then, the minimization problem of complementary energy is obtained as the well-known Dorn’s
dual problem of QP, which is a separable dual problem; i.e., the primal and dual problems have no
common variables. The validity of the obtained complementary principle as well as the zero duality gap can
be shown by using the strong duality of QP. A general nonlinear programming problem does not have a
separable dual problem, and there exists the duality gap between the primal and dual optimal objective
values. This explains, from the view point of duality theory, the difficulty of formulating the extremum
principle of complementary energy in the finite deformation theory. Recently, the extended concept of
duality, which is referred to as triality, was presented by Gao (1997, 1999) and Gao and Strang (1989) for
the extremum complementary energy principles of finite elasticity. Assuming nonsingularity of the second
Piola—Kirchhoff stress, Gao’s complementary energy is explicitly expressed in terms of both the first and the
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second Piola—Kirchhoff stresses. At the equilibrium state, this complementary energy attains the stationary
point under the subsidiary constraints such that the first Piola—Kirchhoff stress satisfies the equilibrium
equation.

In the authors’ very recent paper (Kanno et al., 2002), it was shown for cable networks that the mini-
mization problem of total potential energy can be reformulated as a second-order cone programming
(SOCP) problem. SOCP is a class of convex programming including linear programming (LP) and QP, and
is included in semi-definite programming (Vandenberghe and Boyd, 1996). SOCP has received increasing
attention for its wide fields of application (Jarre et al., 1998; Vanderbei and Yurttan Benson, 1998; Ben-Tal
and Nemirovski, 2001), and for the development of practical algorithms referred to as primal-dual interior-
point methods (Monteiro and Tsuchiya, 2000).

SOCP is known to be a special case of LP over symmetric cone, and have a separable symmetric dual
problem with zero duality gap (Ben-Tal and Nemirovski, 2001). Therefore, it is very natural to conjecture
that the minimization problem of complementary energy is obtained as the dual SOCP problem, which
involves no primal variables. In this paper, we propose a very simple and easy approach to establish the
minimum complementary energy principle for cable networks; i.e., the minimization problem of comple-
mentary energy will be immediately derived by using the well-established duality theory of SOCP. In this
approach, the ambiguity in the existence and uniqueness of inversion of constitutive law is successfully
avoided. Moreover, the complementary energy function is obtained explicitly in a simple algebraic form.
This advantage can be understood from the nice structure of corresponding Lagrangian suddle function.

This paper is organized as follows. In Section 2, we introduce the SOCP problem, and prepare the results
about its strong duality. In Section 3, we present an SOCP problem in the standard form, which has the
same optimizer as that of the minimization problem of total potential energy of cable networks. By using
the framework of duality theory of SOCP, the separable dual problem to the minimization of total potential
energy is obtained in Section 4. The strong duality and the optimality conditions of the obtained dual
problem are investigated to guarantee that the optimal solution corresponds to the set of internal force
vectors at the equilibrium state. Thus, the minimum principle of complementary energy is established in
truly complementary form; i.e., the principle contains only stress components, and the sum of total po-
tential energy and complementary energy becomes equal to zero at the equilibrium state. Section 5 is
devoted to the discussion on the existence of solution. In Section 6, the concept of complementary work is
revisited in order to investigate the physical meaning of the obtained complementary energy function. A
simple cable network is examined in Section 7 to illustrate the results. Some remarks are given in Section §,
where our approach is compared with others in the literature from the unified view point of Lagrangian
duality. It is interesting to see that the different approaches can be interpreted as the variety of Lagrangians,
since the Lagrangian is a classical and rather familiar mathematical tool for researchers working on
mechanics. It is also clarified how our approach can avoid the difficulties of coupling of stress and dis-
placement and multi-valued inversion of constitutive law. Sections 9 and 10 are devoted to the proofs of
lemmas and theorem in Sections 3 and 4, respectively.

2. Primal and dual pair of second-order cone programs

In this paper, all the vectors are assumed to be column vectors. To simplify the notation, however, define
(a,b) = (a,b)" = (a",b")" € R"™™

for vectors @ € R" and b € R”.
Let 2 (p) be the second-order cone in p-dimensional space defined as (Monteiro and Tsuchiya, 2000)

A (p) = {(s0,51)[s0 = [|s1]},



4440 Y. Kanno, M. Ohsaki | International Journal of Solids and Structures 40 (2003) 44374460

where s, € R and sl € R”"!. The notation |Is1]| for s, € R ! denotes the Euclidean norm of the vector si;
i.e., |si]| = (sTs;)"/*. For a simple example of p = 3, the second-order cone is defined as

j‘(?’) = {(x07x17x2)|x0 = m},

where s; = (x1,x2) and s = (xo,s). It is easy to see that #"(3) coincides with the surface and interior of a
circular cone in three-dimensional space, which is as illustrated in Fig. 1.
A (p) denotes the dual cone of #(p), which is defined by using 4y € R and 4, € R”™" as

A (p) = {(Z0, 41)|Aoso + A{s1 = 0, V(so,81) € A (p)}.

Then ™ (p) = A (p) holds, which is known as the self-duality (Monteiro and Tsuchiya, 2000; Ben-Tal and
Nemirovski, 2001). It follows that

(/1(),11) S J{(p) == ;L()S() +/llTs1 = 07 \V/(S(),Sl) S ,[(p) (1)

is satisfied. In the following, we often use the notation sy > ||s,|| instead of (so,s;) € # (p).
We consider the following SOCP problem:

(PSOCP) : min de (2)

st. Aix=s;+e, sp=|sa|l (=1,...,k),
where x € R” and s; = (si0,81) € R" (i=1,...,k) are variables, d € R™ and ¢; ¢ R" (i=1,...,k) are
constant vectors, and 4; € R"*" (i =1,...,k) are constant matrices. The dimension of (Psocp) is deter-

mined by (m,k,ny,...,n;). The dual problem of (Psocp) is also an SOCP problem defined as

i
(Dsocp) : max Ze}z[

K (3)
st. YAlzi=d, zog=|zl (=1,...,k),
i=1
where z; = (zi,21) € R™ (i=1,...,k) are variables. It is known that the problem dual to (Dsocp) is
(Psocp); 1.e., the duality of SOCP is symmetrlc (Ben-Tal and Nemirovski, 2001).
To 51mp11fy the notation, define N = 2,21 n, s=(s;,...,ss) €RY, and z = (z1,...,2%) € R'. We say

that (x,s) and z are feasible solutions of (Psocp) and (Dsocp), respectively, if they satisfy all the constraints
of (PSOCP) and (DSOCP)- Define the sets gO(PSOCP) - Rm+N and yO(DSOCp) - RN by

?’O(Psocp) ={(x,8)|[Adix=si+e, so>|sl (G=1,...,k)},

7 (Dsocp) = {

To=d, zo> |zl (i= 1,...,k)}.

X,
X

Fig. 1. Second-order cone in three-dimensional space.
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(x,5) e 7 O(PSOCP) and z € & O(Dsocp) are referred to as interior-feasible solutions of (Psocp) and (Dsocp),
respectively.

Assumption 2.1
(i) The m rows of A" are linearly independent, where 4™ = (4], ..., AkT) € R™Y,

(i) Z°(Psoce) # 0, F°(Dsoce) # 0.
(Psocp) and (Dsocp) are known to satisfy the following duality property:
Theorem 2.2 (Strong duality of SOCP). Under Assumption 2.1,

(1) (Psocp) and (Dsocp) have optimal solutions (X,s) and z, respectively, and
k
d'x=> ez (4)
=1

(ii) feasible solutions (x,5) and Z of (Psocp) and (Dsoce), respectively, are optimal solutions (a) if and only if
(4) is satisfied; (b) if and only if they satisfy

s'7,=0 (i=1,....k). (5)
Proof. See Theorem 2.4.1 in Ben-Tal and Nemirovski (2001). O

Theorem 2.2 plays a fundamental role to establish the minimum principle of complementary energy in
Section 4.

3. Minimum principle of total potential energy for cable networks

Consider a pin-jointed cable network in three-dimensional space. We assume a linear elastic material
obeying Hooke’s law. The network is discretized into members which connect pin-joints and supports.

Let »™ and n¢ denote the numbers of members and unconstrained degrees of freedom, resPectively. The
reference state and actual equilibrium state are referred to as I'" and I'"', respectively. x” € R” and u € R”d,
respectively, denote the vectors of nodal coordinates at I'', and nodal displacements at the deformed state
corresponding to unconstrained degrees. We specify the external dead loads f € R™ for unconstrained
degrees.

Throughout this paper, we assume the following conditions, which are satisfied by most of actual cable
networks:

Assumption 3.1. Suppose that the cable network € satisfies the conditions such that

(i) there is no more than one member which has the same adjacency;
(i) each member connects two different nodes;
(iii) there is a path between any pair of nodes;
(iv) at least one freedom of displacement with respect to each coordinate x;, x, and x3 is constrained; i.e., ¢
is not a free-body with respect to any direction.

Assumption 3.1 will be utilized to ensure the strong duality between the minimization problems of total
potential energy and complementary energy (see Sections 4 and 5).
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Let ¢; and 10 (i = 1,...,n™) denote the elongation regarded as the generalized strain, and the specified
initial unstressed length of the ith member, respectively. The relation between ¢; and u is written as

i+ =|Bi(x"+u)—b|| (i=1,...,n"), ©

which is regarded as the geometrically exact compatibility condition. Foreachi=1,...,n™, B; € R isa
constant matrix determined only by the connectivity of nodes and the ith member, each element of which is
either {—1,0,1}. b, € R’ is a constant vector that consists of the specified nodal coordinates of support if
the ith member is connected to the support, otherwise b; = 0.

Let g; denote the axial force, which is a generalized stress. The cable member is assumed not to capable
of transmitting the compression force; i.e., the relation between ¢; and o, is written as

kic; (Ci = 0)»
O'i(ci) = {O (—l? <¢ < 0)7 (7)

where k; > 0 denotes thf: extensional stiffness of the ith member. Note that ¢; defined by (6) satisfies
¢; = —I? for any w € R” . From (7), the strain energy w; in terms of ¢; is obtained as

Ci 1 2
Wi(ci) = / O'i(cf)dci = {Zkici (c,- > 0)’ (8)
0 0 (—l? <o < 0)
By using (6) and (8), the problem of minimum total potential energy is formulated as
() :min  H(c,u) =Y wi(c;) —f'u
i=1
s.t. C;i = HB,(XO—‘y-lI)—b,”—l? (i:l,...,nm),

©)

where independent variables are u € R™. Let ¢!l = (") e R™ and u" € R, respectively, denote the vectors
of member elongation and nodal displacements at I'". The principle of minimum total potential energy
states that (¢!, ') is an optimal solution of (IT).

Notice here that (IT) is a nonconvex optimization problem, since ¢; defined by (6) is a nonconvex
function of u. This implies that the classical Lagrangian dual problem of (IT) contains unknown u, and does
not satisfy the strong duality. Therefore, it is not straightforward to establish the dual minimum principle to
(IT) without duality gap only in terms of the stress components. See Section 8 for more details. This dif-
ficulty motivates us to investigate the following convex problem:

nm 1
. . P _ - .2_ T
(P):min ¢ (y,u) = i;zk,yi fu (10)
st. y+0=|B(x"+u)—b| (i=1,....,n"),

where y = () € R™ and u € R" are independent variables. The following lemma gives the relation be-
tween optimal solutions of (IT) and (P):

Lemma 3.2 (Relation between (IT) and (P)).
(1) (M, u) satisfying (6) is an optimal solution of (I1) if and only if (y,u") defined as

T (=0 . m
yi_{() (L1< e < 0) i=1,...,n™) (11)

is an optimal solution of (P).
(i) If (<", u") and (y,a) are optimal solutions of (II) and (P), respectively, then II(c",u") = ¢ (y, u).

Proof. See Kanno et al. (2002) (Section 3). O
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Lemma 3.2 implies that #'! can be obtained by solving (P) instead of (IT). It has been shown that (P) is
easily solved compared with (IT). Indeed, the primal-dual interior-point method is a very effective algo-
rithm with polynomial-time convergence to obtain an optimal solution of (P). See Kanno et al. (2002) for
more details.

By using the convexity of ¢” and after simple algebraic manipulation, (P) can be reduced to an SOCP
problem. Consider the following problem:

(Ps) : min (j)g(u, 1) = nf:t,- —fTu
=1

t
iy
Yi

where independent variables are y € R", u € R”d, and t = (1) € R™. The following lemma implies that (P)
and (Ps) are equivalent:

(12)

2
st. —+1>=

2k nH 2B ) b (=1,

Lemma 3.3 (Relation between (P) and (F)).
(1) (p,m) is an optimal solution of (P) if and only if (y,a,t) satisfying

f,-:%yf (i=1,...n" (13)

is an optimal solution of (Ps).
(i) If (y,&) and (p,i,t) are optimal solutions of (P) and (Ps), respectively, then ¢"(y,u) = ¢ (i, f).

Proof. See Section 9. O

Note that (Ps) has the linear objective function, and the feasible set of (Ps) is represented by the 2n™
second-order cones; i.e., (Ps) is an SOCP problem. Indeed, it will be seen that (Ps) can be embedded into
(Psocp) in the following section.

4. Minimum principle of complementary energy

In order to formulate the dual problem of (IT), we first investigate the dual problem of (Ps), which is
referred to as (Ds). Because (Ps) is an SOCP problem, (Ds) can be obtained by simple algebraic mani-
pulation by using the framework of SOCP duality theory introduced in Section 2. To this end, it is required
to express (Ps) in the form of (Psocp). Recall that (Psocp) and (Dsocp) have no common variables; i.e., an
SOCP problem has the separable dual problem, which is rather unusual property for nonlinear optimi-
zation problem. This special structure, as well as the strong duality (Theorem 2.2), of SOCP is an indis-
pensable property to the truly complementary energy principle, otherwise the dual problem contains the
unknown displacement components such as rotations.

For the dimensions of (Psocp), assign

mzznm+nd, k:27’lm,
(14)
n]:...:nnm:47 n,1m+1='-'=n2nm:3-

Let

d=(1,0,—f ) e R x=(t,y,u) e R””"" (15)
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where 0 = (0,...,0) € R and 1 = (1,...,1) € R". Consequently, we can see ¢ (u,t) = d"x, which im-
plies that the objective function of (Ps) is embedded into that of (Psocp)-
Next, consider the constraints of (7). Define 0 = (0}) € R" (i=1,...,n™) as

9:‘_:{1 (=1,

J 0 (otherwise).
Assigning s; (i=1,...,2n™) as

t; ti

T
. = . 0 P 0 —_ i T m_; — —_— _ : | — m
S (yz+lzaBl(x +u) bl) I Spm i <2kl+172kl 13yl> (l 1? 1 )’ (16)

x and s; satisfy the linear equality constraints 4;x = s; + ¢; in (Psocp) with

1 = T AT
—0 0 0
T T T 2k,
o™ ¢" o N . m

Ai_ |:0 0 BI.:|7 Anm+i_ Eol—r OT OT (l— 1,...71/1 ), (17)

0" ¢ 0"
e = (1% -Bx"+b)", emy,=(-1,1,00" (i=1,...,n"). (18)
Accordingly, we see for i = 1,...,n™ that the inequality constraint s, = ||s;1|| in (Psocp) corresponds to
the first constraint in (Ps). For i =n™+ 1,...,2n™, s; = ||si1|| in (Psocp) corresponds to the second con-

straint in (Ps). Thus, (Ps) is embedded into (Psocp).
In the following, the dual problem of (Ps), which is referred to as (Ds), will be derived from (Dsocp)
along with the definitions of (14), (15), (17) and (18). Assigning z; in (Dsocp) as

= (Qia vi)T € R47 Spmy = éi = (éiOv éila éiZ)T € R’; (l = 17 o .’nm), (19)

(17)—(19) lead to

0
AiTZf = (Iioi S RZ'Idev eiTzl' = _I?Qi - (foo - bi)Tvi (i =1,... 7”m)a (20)
B;FV,'
o+ Sa 0
Zki M pd . m
A:{meiz"mH = 51201‘ € R2 - ) e;mﬂ‘znmﬂ' = _gi() + éil (l = 17 R ) (21)
0
It follows from (15), (20) and (21) that the equality constraints Zf;l A,.Tz; =d in (Dsocp) are reduced to
am 5!02—; éil 0i 1
i | = 0. 22
; (qi+&0)0 —f (22)
B;FV,*
By using (19), we see that the inequality constraints zy = ||zal] (i=1,...,2n™) in (Dsocp) are

reduced to

g = vll, Gzl )T G=1,...,n™). (23)
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By substituting (20)—(23) into (Dsocp), the dual problem of (P) is obtained as

(Ds) :max  ¢g(q,v,&) =S (—o+ &) — 2l — S (Bix® — b)),
i1 i=1 i=1
s.t. in + éil = 2ki7 gyiO > ||(éil7 6[2)T” (l = la s 7nm)7 (24)
qi+éi2:07 QIZHVIH (i:17"',nm)7
EB;FVI' +f = 07
i=1
where independent variables are ¢, = (¢;) €R", v=(v,...,vm) €ER™, and €= (§,...,&n) € R,
Define the function wS on v, € R® by
T .
HOESTe (25)

which coincides with the complementary strain energy in small deformation theory. Consider the following
problem:

(1) :min  I(v) = wE (v) + 2 0Iwil| + X (Bix — b)'w,
i=1 i=1 i=1

n™m (26)
st. Y.Bv,+f=0,
i-1
where independent variables are v = (v;,...,vm) € R’ . We can show the following lemma relating

optimal solutions of (Ds) and (IT€):

Lemma 4.1 (Relation between (Ds) and (I1€)). B
() v is an optimal solution of (IT°) if and only if (g,v", &) satisfying
: 4@ z a z 11
o :4_k,-+ki’ Cin = _4_k,»+ki’ Cn=—q=—|v | (=1,...,n")
is an optimal solution of (Ds). -
(ii) If v"" and (g, %, &) are optimal solutions of (II€) and (Ds), respectively, then II°(v') = —¢2 (g, v, €).

Proof. See Section 9. O

Notice again that (Ps) and (Ds) are primal-dual pair of SOCP problems satisfying the strong duality
(Theorem 2.2). Lemmas 3.2 and 3.3 imply the equivalence between (Ps) and (I7), and Lemma 4.1 shows the
equivalence between (Ds) and (IT). Therefore, the strong duality between (IT) and (IT€) is immediately
obtained from the duality theorem of SOCP. Define the set Z#°(I1°) C R as

i:BiTv,-—i—f:O}.

i=1

yo(nc) = {(Vl7. . .,vnm) c R3nm

The following lemma should be prepared:

Lemma 4.2. If Assumption 3.1 is satisfied, then

(i) the n rows of B' are linearl%/ independent, where B' = (BIT, e ,Bzm) c R,
(i) Z°(I°) # 0 for any f € R".
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Proof
(1) See Section 5.
(i1) This assertion follows from Lemma 4.2(i) immediately. [

Lemma 4.2 is utilized to show that Assumption 3.1 guarantees Assumption 2.1, which is a sufficient
condition for strong duality of primal-dual pair of SOCP problems. The following theorem is the main
result of this paper:

Theorem 4.3 (Strong duality of (IT) and (II€)). Under Assumption 3.1.
() (IT) and (II€) have optimal solutions ("', u"™) and v", respectively, and II(c",u"") = —IT¢(»").

(ii) (", u") and ¥"* are optimal solutions of (IT) and (II€), respectively, if and only if there exists a vector
(B',... W%) € R*™ satisfying

B =B +u")y—b, (i=1,....n"), (27)

M= -0 i=1,...,am), (28)
1T

gz e A0 (29)

i — 0 i (th:O) — g ooy 3

> BN +f=0. (0)

i=1

Proof. See Section 10. O

Theorem 4.3(ii) and the principle of minimum potential energy imply that c!' and #" satisfying (27)~(30)
correspond to member elongation and vector of nodal displacements at I'!. Accordingly, fori=1,...,n™,
h;l € R? defined by (27) corresponds to the vector with the same direction and length as the ith member at
. 1t follows from (29) that &' and —v!" have the same direction as illustrated in Fig. 2, and |»1|| is
equivalent to the axial force; i.e., —v!" corresponds to the internal force vector of the ith member at I'"". The
condition (30) corresponds to the equilibrium equations in terms of internal forces. Hence, the comple-
mentary energy principle now can be stated such that the internal forces vi',... v!,, are obtained by

minimizing IT(v) over the constraints of equilibrium equations. It should be emphasized that IT¢(v) is

Fig. 2. Physical interpretation of v!.
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determined uniquely for any v € R™". Moreover, Theorem 4.3(i) guarantees the zero duality gap between
(IT) and (I1°).

5. Existence and uniqueness of the solution

Lemma 4.2 and Theorem 4.3 imply that Assumption 3.1 is a sufficient condition for existence of solu-
tions of (IT) and (I1€). In this section, the existence and uniqueness of solution are investigated based on the
framework of graph theory.

Definition 5.1. For a cable network %,

(i) the unconstrained cable network %~ is uniquely defined by removing all the constraints of displace-
ments from %. Conversely, % is obtained by adding constraints at all the nodes in the set #*
(k=1,2,3) of " in the direction of x;

(i) the directed graph %(%) is defined by regarding each node and member of ¢~ as vertex and edge with
any direction, respectively.

Note that | #*| = n" — n¢, where n" and n¢ denote the numbers of nodes and degrees of freedom of % in
the direction x; (k = 1,2,3), respectively. Assumption 3.1(iv) implies | #*| > 1. It follows from Definition
5.1 that €* has no support, and the number of degrees of freedom is 3#". By using the terminologies in
graph theory, Assumption 3.1(i)—(iii) can be alternatively written as (i) (%) has no multiple edges, (ii) %(%)
has no loop, (iii) %(%) is connected; i.e., Assumption 3.1(i)—(iii) implies that (%) is a connected simple
directed graph (see, e.g., Wilson, 1985 for basic background of graph theory).

Proof of Lemma 4.2 (/). Let D € R™ " denote the incidence matrix of %(%). v* € R™ (k = 1,2,3) denote
the vector composed of the components of v € R*" in x;-direction. Similarly, the external load vector
f € R is divided into the set of vectors f* € R’ Define the matrices D* € R%*"" by removing the jth row
in #* from D, and then we see that #°(II€) can be rewritten as

90(HC) - {(v17v27v3)|Dkvk +fk =0 (k =1,2, 3)} (31)

Alternatively, as a result of appropriate permutations of columns and rows of B', the matrix

D' 0 O
o D* 0
o o0 D

can be obtained. Therefore, we have only to show D* = n¢ (k = 1,2,3).

There exists j; € #* because | #*| > 1. Let D(j;) € R™ V""" denote the matrix obtained by removing
the jith row from D, which is referred to as a truncated incidence matrix in the graph theory. For a con-
nected simple directed graph, it is well known that D(j,) = n" — 1 (Chvatal, 1983, Chapter 19). Since any
row of D¥ is a row of D(j,), all rows of D" are linearly independent. [J

As a consequence of Lemma 4.2 anddTheorem 4.3, Assumption 3.1 guarantees that both (IT) and (IT)
have optimal solutions for any f € R" . Assuming now that ¥ does not satisfy Assumption 3.1(iv); i.e.,
D' = D (Fk), we see rankD = n" — 1 (Chvétal, 1983), and hence Z°(II) = () for a certain f € R".
Accordingly, Assumption 3.1(iv) is a necessary condition for existence of solutions of (IT) and (IT°).

The remainder of this section is devoted to the discussion of uniqueness of solution.
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Lemma 5.2 (Uniqueness of v!). Under Assumption 3.1, v'' = (w!1, ... vIL) exists uniquely.

Proof. For i=1,...,n™, vIv;, and ||v are strictly convex functions of v, € R®. Accordingly, (II°) is a
minimization problem of a strictly convex function IT(v) over linear equality constraints, from which and
Theorem 4.3 it follows that (I1°) has the unique solution v''. [

")) exists
), which implies ' = o;'(||p"]|). By using (28), (29) can be

Suppose that the ith member is in tensile state; i.e., v!' # 0. It follows from (7) that a;'(||v
uniquely. From (29), we have ||v!|| = o;(c}"
reduced to

VH

' = —[o; ' (Iv') + 1] ||vil||’ (32)

1

and we see that hln exists uniquely. Hence, v # 0 is a sufficient condition for the uniqueness of hlI.I. On the
contrary, suppose v'' = 0. Then, the inversion of (29) is not unique, which implies that the deformation «" is
not necessarily unique. Define % by removing all the members satisfying v'! = 0 from %. In accordance with
Definition 5.1, the graph %(%) is defined for %.

Lemma 5.3 (Uniqueness of #'). If

(i) % satisfies Assumption 3.1(iv), and

(il) %(%) has a subgraph which is a spanning tree of 4(%6),
then u'' of € is unique.

Proof. Eq. (32) implies that hl].'_exists uniquely for any member of %, from which and Lemma 5.3(i) it
follows that the deformation of % is unique. From Lemma 5.3(ii), % has all the nodes of &, which concludes
the proof. O

Volokh and Vilnay (2000) showed that the tangent stiffness matrix is positive definite, if all the members
are in tension. The results of Lemmas 5.2 and 5.3 are also seen in Atai and Steigmann (1997). However, to
the authors’ knowledge, no proof for finite deformation has been published based on the graph theory.

6. Physical interpretation of the complementary energy function

In this section, we investigate the physical meaning of the obtained complementary energy function in
(I1°). Let x° € R" and B € R® (i=1,...,n™) denote the vectors of nodal coordinates corresponding to
unconstrained degrees and support degrees, respectively. Similarly, recall that the vectors at the deformed
state are denoted by x° +u € R" and b eR® (i=1,...,n™). Note that x°, b?, and b; are specified. For
i=1,....,n" u;,=b, — b? € R? denotes the prescribed displacements of the support connected to the ith
member.

Under the assumption of small strain and small rotation, the complementary energy function IT¢,y for
trusses is well known to be given by

i (v) = ZW?(‘G) - Z'AliTViv (33)
-1 =1



Y. Kanno, M. Ohsaki | International Journal of Solids and Structures 40 (2003 ) 44374460 4449

where wC defined by (25) is the complementary strain energy of the ith member. On the other hand, al-
lowing finite deformation, we have shown in Section 4 that the complementary energy for cable networks
can be written as

m

n n™

n(v) = ZWI»C(W) - Zfl?% (34)
where
W (v) = w () + Llwil| — (Bix® = b)) (—,). (35)

It is interesting that the complementary work w< for cable member defined by (35) seems to contain the
complementary strain energy wC for truss member in the small deformation theory and the additional
terms. In this section, It will be shown that (35) is derived by using the framework of complementary work
in finite deformation theory.

Consider a cable member in three-dimensional space as illustrated in Fig. 3, where node (a) is fixed at
x = 0, and the external force t; € R® is applied at node (b). Let h? € R® denote the nodal coordinate of node
(b) at I'", which corresponds to 7; = 0. r; € R denotes the vector of displacements of node (b).

The infinitesimal increments of work dw; done by dr; and complementary work dwfj done by dr;,
respectively, are written as

dﬂ)l- = ’L'[Tdr,-, (36)

dw¢ = rldr,. (37)
The hysteresis independence of deformation verifies to choose a loading scenario, for example, as

n(p) =tp (0<p<l), (38)

where %; € R® is a constant vector, and p increases monotonically from p = 0 to 1. By using dz;(p) = %,dp
and (37), we obtain

1
W[C:/ r:(p) & dp. (39)
0

For p (0<p<1), let h(p) € R® and c;(p) denote the nodal coordinate of node (b) and the member
elongation, respectively, at the equilibrium state corresponding to z;p; i.e.,

hi(p) = I +r,(p), cp) = |h(p)ll = 1}- (40)
Evidently, k;(p) is in direction of t;(p), from which and (38) it follows that
hi(p)" % = () |l||%] = (ei(p) + 1) |12 (41)

Fig. 3. Cable member.
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By substituting (40) and (41) into (39), we obtain
1 1 1
5 = [ o)~ B)udp = [ elp) + Dl — [ K dp —wEG) Kl - KE @)
0 0 0

which is the complementary work of cable member allowing the finite deformation.

For the general formulation of complementary energy of cable network (34), we can show that (35) is
induced naturally from complementary work (42). Observing that no complementary work is done during
rigid-body translation of member without rotation, we can fix one of the nodes of the ith member and
assign r;, h;, and h? as

r,=Bu—i;, h=B;(x"+u)—b, h =Bx"-b.

Eq. (29) implies that, for each i = 1,...,n™, the direction of ¥/ is opposite to &' = B;(x® + u") — b;, which
allows to assign as 7, = —v;. As a consequence, (42) leads to (34) along with (35). It should be emphasized
that IT°(v) derived by duality theory has been also derived from the concept of complementary work
allowing the finite deformation.

In the case of small deformation, we may assume that h and %; have almost the same dlrectlon and
||AY|| = 19. Accordingly, ho 7; ~ [°||z;]| is obtained, from which (42) can be approximated as w& ~ w&(%;),
Thus, the result of (42) agrees with the well-known complementary work in the small deformatlon theory

7. Ilustrative example

Consider the simplest example of cable network with single-degree of freedom as shown in Fig. 4, where
n™ = 2, and n¢ = 1. Suppose that both members have the same extensional stiffness k£ and initial unstressed
length I°. The external force f satisfying 0 < f < 2kI° is applied at node (c).

As shown in Section 4, the complementary energy function IT¢ in (26) is different in the second term from
IIf,y in small deformation theory. In this example, we will illustrate that the second term is necessary in
finite deformation theory even without rotation of members. To this end, the reference state is given such
that node (c) is located at the origin; i.e., X’ =0, b, =0, and b, = 2I°. The minimization problem of
complementary energy will be analytically solved below, and the result will be compared with the solution
to minimum total potential energy.

The problems of minimum total potential energy and complementary energy are obtained as

() : min  I(u) = wi(c1) + walcr) — fu (43)
st. o =lu =1 c=u-20 -1
. 1
() s min 110y, 02) = 57 (6 4+ 63) + (] + Jon]) = 2170, } @)
st. v 4+u+f=0,

where w;(c;) is defined by (8). The internal forces v; and v, are defined as shown in Fig. 5.

x=0 x=u f x=2lo
—_—

o A Member (1) A Member (2) A_ "
(a) (©) (b)

Fig. 4. The deformed state of a single-degree-of-freedom cable network.
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- _&_—:ﬁ .
A Member (1) Vl JAN VZ Member (2)

() (c) (b)

Fig. 5. Free-body scheme of node (c).

From the equilibrium equation v; + v, + f = 0 and the condition f > 0, we obtain v; <0 or v, <0. To
solve (IT€) analytically, we consider the following three cases:

(i) v <0, v, <0: By using the equilibrium equation, we can eliminate v, from IT¢ as

2
HC(ul,w):Hz)z—(klo—g)] —|—§—Z—%<k!°—§) +1I°f.

Since kI° — f/2 > 0 and v, <0, we see that the minimum objective value is I1°(—f,0) = f2/2k + I°f.
(i) v; >0, v» <0: IT€ is reduced to

2 2
nc(ul,uz)zﬂuz—(zmo—f;)] gk—}{<2k1° f;) - 1.

From v, = —f —v; and v; > 0, we obtain v, < — f. It follow from 2k/° — f/2 > 0 that II€ decreases
strictly on v, < — f, which implies that the minimum objective value is IT°(0, —f) = f?/2k + 31°f.
(i) v; <0, v, > 0: IT€ is reduced to

1 2
vy, v00) = (Uz +j:> +f + I°f.
k 2
The condition —f/2 < 0 implies that the minimum value of IT¢ is IT°(—f,0) = f?/2k + I°f.
The results of (i)—(iii) imply that the solution of (I1€) is (v!!,v)l) = (—f,0), which is easily verified to

correspond to the equilibrium state. On the other hand, the solution of (II) is u" = f/k + I°, which is
compatible to the solution of (IT¢). The optimal values of IT and IT€ satisfy

1 2
: Ly = e ),

which illustrates the assertion of Theorem 4.3(1).
For comparison purpose, consider the classical complementary energy I1} ;. From (33), we obtain

(") = Skel” — fill =

1
2k(v1 +v3) — 20%;. (45)

By using the equilibrium equation v; + v, + f = 0, (45) is reduced to

2 2
e 4o ()] oo -5’

which leads to the erroneous solution v, = kI° — f/2. Alternatively, consider the case such that x* = /° and
1 = i, = 0, which agrees with the assumption of small deformation. Then, (33) is reduced to

HEIN(UI’ UZ)

1
% (l)% + U%)v

which leads the solution (vy,v,) = (—f/2,—f/2); i.e., the compatible solution for a truss is obtained.

HEIN(UZ) =
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8. Remarks on the Lagrangian duality

The (extended) Lagrangian dual problem has been developed for mathematical programming problems
(Mangasarian, 1969; Rockafellar, 1970) as well as variational problems (Ekeland and Temam, 1976). In
this section, (IT) is revisited by using the framework of Lagrangian duality theory. In addition, we present
the unified view point for several complementary energy principles ever addressed in the literature for finite
dimensional structures. It is interesting that the variety of approaches is understood as the different for-
mulations of Lagrangian. It is remarkable that our approach does not have any difficulty or ambiguity of
inversion of constitutive law.

We start with (II )' i.e., the Lagrangian of (II) can be defined as

(c,u,4) Zwl (c) = f u =" Jilci+ 10 — ||Bi(x" + u) — by]],
i=1

where 4, (i = 1,...,n™) are the Lagrangian multipliers, and 4 = (1) € R"". Note that L” corresponds to the
Hu-Washizu functional, which is well-known in the continuum mechanics. We see that (II) can be alter-
natively written as

2(L") :min  sup{L"(c,u, A)|A € R""}, (46)
where
n 0 0 i m
L7 )| R"m = Zz lwl( 1) f u (ci+li _”Bi(x +u)_bi||7 lZl:"'?” )7
sup{L(e.u 2)l4 € RT} { +00 (otherwise).

The Lagrangian dual problem is obtained by replacing min-sup with max-inf in (46); i.e.,
(L") :max  inf{L"(c.u, D)|c €R™, we R™}. (47)

Unfortunately, L7 is a nonconvex and nonsmooth function of u. Accordingly, it is difficult to calculate the
infimum in (47) explicitly, and there exists the duality gap between 2(L7) and 2(L") generally. This ex-
plains, from the view point of duality theory, that the standard approach using 2(L") fails to derive the
truly complementary energy principle.

Consider (P) instead of (IT). By using the self-duality of second-order cone introduced in (1), the
Lagrangian of (P) can be defined as

| n
Zlikiyiz —fu— Z%‘(J’f +17)
= i=1

LP(ya”aqa V) = m N
— v Bi(x" +uw) —b] (g =il i=1,..n"),
+00 (otherwise),
where ¢ = (¢;,) € R" and v = (v,...,vm) € R*" are the Lagrangian multipliers. Indeed, (P) is equivalent
to
2(L") :min  sup{L’(y,u,q,v)|g €R"", v e R*"}, (48)
yu

which validates that L” can be regarded as the extended Lagrangian of (P) (Ekeland and Temdm, 1976). It
is remarkable to note that L” is a linear function of u, even if (P) is a nonlinear programming problem. The
Lagrangian dual problem is now defined as

(L") :max  inf{L"(y,u,q,v)ly €R", ue R"}. (49)
q,v
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Note that L” is a convex and smooth function with respect to y and u, from which the problem (49) is
reduced to

(L) :max L (y,u,q,v) (50)
s.t. VyLP = O, VMLP = 07 qi = Hv,” (l = 1, 7f’lm)

Here, V,L” = 0 is reduced to
gi=ky; (i=1,....n"). (51)

Eq. (51) is the constitutive law in terms of member elongation and axial force, which is analogous to that in
terms of Green—Lagrange strain tensor and the second Piola—Kirchhoff stress tensor used in the continuum
mechanics. It is obvious that (51) has unique inversion. By using this property, we can eliminate y; from the
objective function of %(L”). Similarly, u can be eliminated by using V,L” = 0, because L’ is a linear
function with respect to u. Thus, Z(L”) can be reformulated into the form without y and u, which is the
expected property for the truly complementary energy principle. Actually, it is easy to see that Z(L")
coincides with (D) in Section 9.2, which is equivalent to (IT¢) (see Lemma 9.2).

In Section 4, we derived (Ds) by using the well-established results about the duality of SOCP. The series
of lemmas and theorem in Section 4 may also be obtained by using the results of (extended) Lagrangian
duality theory (Ekeland and Temam, 1976, Chapter VI). The nice separable duality property of SOCP can
be understood from the characteristics of the Lagrangian such that L” is a linear function of u with the
nonlinear subsidiary conditions of the Lagrangian multipliers. By utilizing this type of Lagrangian, the
authors derived the necessary and sufficient conditions for optimality of the structural optimization
problem of trusses under the fundamental frequency constraints (Kanno and Ohsaki, 2001).

Letting r; = Bu — i, € R* and A} = Bx" — b) € R® (i = 1,...,n™), we see ¢, = ||r, + k|| — I°. Define a
function w/ as

wi(r) = willr + || = 17). (52)

Then, (IT) is alternatively written as

2(L") : min gwj(ri) —fu
=1

(53)
s.t. l’i:Biu—ill' (izl,...,nm),
along with the Lagrangian
L"(V,u,r) = ZW?(VI) —fTu—ZT;r(V,'—Bill-i-lAli), (54)
=1 =1
where 7; € R? (i = 1,...,n™) are the Lagrangian multipliers, 7 = (z;,...,7,m) € R* ,and r = (ry,...,rm) €

R*". Mikkola (1989) investigated L” for truss structures. For continuum, this type of Lagrangian can be
found in various literature (see, e.g., Koiter, 1d976, (6.4)). In connection with the Lagrangian dual problem,
we see that L’ attains inf{Z’|r € R, u € R"} only if

vqu = 07 (55)
V.L'=0 (i=1,....,n") (56)
are satisfied. Eq. (56) is reduced to
_ owi(r)

T o, i=1,....,n™). (57)
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For the ith member, (57) is the constitutive law in terms of the nodal displacement vector and internal force
vector, which is analogous to that relating the displacement gradient and the first Piola—Kirchhoff stress
tensor in the case of continuum. Assuming that (57) has an inversion, we can define the function w¢(z;) only

in terms of t; as
W,C(r,-) = ‘viTr,- —wi(r), (58)

which is the Legendre transformation of w!. By substituting (55) and (58) into (54), we can formulate the
dual problem of 2(L") as

(L) :max =Y w(r) — Ya'r

nmi:l i=1 (59)

st. Bt —f=0,
i=1

which corresponds to the classical Lagrangian dual problem (Mangasarian, 1969). Therefore, the strong
duality does not hold between (L") and 2 (L") generally. Since L” is a linear function of u, the constraints
of (L") contain only stress components 7; as variables. However, as clarified by Koiter (1976), (57) does
not have a unique inversion in general. Hence, the objective function of 2(L") is a multi-valued function
(see Mikkola (1989) for the case of trusses). Even in the case of cable network, (57) has the multi-valued
inversion at t; = 0. This is the difficulty of approach based on the Legendre transformation with the
standard type of Lagrangian.

Recently, by using the (Fenchel’s) conjugate transformation, Atai and Steigmann (1997) proposed the
minimum principle of complementary energy for cable networks. For the purpose of comparison, we show
that the same result can be obtained based on the Lagrangian duality approach. In Atai and Steigmann
(1997), a cable network is modeled as an assemblage of one-dimensional continuum, but they restricted
themselves to the case where the external loads are applied only at nodes. Accordingly, we can discuss the
finite dimensional model of cable networks without loss of generality.

In order to formulate 2(L"), we used the necessary conditions (55) and (56) for infimum of L". On the
contrary, by calculating the infimum directly, we obtain

inf{L(r,u,7)jr € R, uc R"}

m nm T nm
= Z inf{zfr, — wi(r,)|r € R*} +inf (ZBI-T‘Q —f ) uluc R Y — 't
i=1 =1 =1
it - Sars (S8l s 0),
= i=1 i=1 i=1 (60)
—00 (otherwise),

where w is the (Fenchel’s) conjugate transformation of w} defined by (Rockafellar, 1970)

wi(7;) = sup{t/r; — w/(r;)|r; € R’}. (61)

By using (60) and (61), the (extended) Lagrangian dual problem of 2(L") is obtained as

(L) :max  —Y wi(n) — Ya'

nml:l i=1 (62)

st. Y Bl't,—f=0.
i=1

This formulation is similar to that of Atai and Steigmann (1997), but they used the deformation gradient
h; = B;(x* +u) — b; € R® instead of displacement gradient r;. Note that the strong duality holds between
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2(L") and 2(L") if w! is convex (Rockafellar, 1970). Otherwise, there exists positive duality gap generally,
and an optimal solution of (L") does not satisfy the equilibrium conditions.

Note that w; is always a (single-valued) function of ;. However, this does not directly imply that w’ can
be written explicitly in a simple algebraic form only in terms of z;. Unfortunately, Atai and Steigmann
(1997) did not present the explicit formulation of complementary energy.

By comparing L, L?, and L", we see that our approach presented in this paper is independent of the
concepts ever addressed. Namely, the ambiguity in inversion of constitutive law is successfully avoided.
Moreover, the complementary energy has been obtained explicitly, which is the practical advantage of our
approach.

9. Proofs of lemmas
9.1. Proof of Lemma 3.3
Lemma 3.3 is shown by converting (P) to (Fs).
Proof. Introducing the auxiliary variables ¢; (i = 1,...,n™), we can reformulate (P) as

nm
min qﬁ}s)(u, H=>4 —fTu
-1

(63)
ﬁ 2 0 0 _ . m
s.t. t = 2yi’ yi+li >||B,(x +ll) b,” (l—l,...,l’l )
We casily see that
k; t; L
=2y = —+1=|| 2% 1 , (64)
27 2k; P

which implies that the problem (63) is reduced to (Ps). An optimal solution of the problem (63) satisfies (64)
in equality for eachi = 1,...,n™, from which Lemma 3.3(i) follows. Lemma 3.3(ii) is immediately obtained
from the assertion (i). O

9.2. Proof of 4.1

Consider the following problem:

(D) : max (;’)D(q7 v) = — g — 3 0%; — > (Bix® — b,«)Tv,«
. i=1 i=1 i=1 (65)
s.t. ZB;FVI +f:0, q,> ||v,|| (l: 1,...,}’lm)7
i=1
where independent variables are ¢ = (¢;) € R" and v = (v,...,vm) € R . We show Lemma 4.1 by two

steps; i.e., we investigate the relationship between (Ds) and (D), and between (D) and (IT1°). The following
lemma provides us with the first step:

Lemma 9.1 (Relation between (Ds) and (D)). (g, ¥) is an optimal solution of (D) if and only if (q,9, &) satis-
Sying

_ g’ _ g’ _

éi0:4_ki+kia §f1=—4—/€i+kﬁ Cn=-q (i=1,....,n"), (66)

is an optimal solution of (Ds). Moreover, the optimal objective values of (D) and (Ds) coincide.
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Proof. By using the constraint conditions of (Ds)

Eio + &n = 2k, (67)
Eo = [|(&n, fz’z)TH, (68)
qgi+Eér =0, (69)

and introducing new variables /€, we can eliminate (&, &, &) from (Ds). (67) verifies that &, and &, are
rewritten as

C C
Sio

t: t:
=5+k, Ga=—5+khk (70)
By using (69) and (70), (68) is reduced to

2 2
«©
_ 17 + ki
4

and the first term of ¢§ in (Ds) is reduced to

m

C

1
L4k =

q,
5 1 (71)

2k

n

Z( o+ <) = Zt (72)

i=1

From (71) and (72), (Ds) is reformulated as

max —y t&— > g, — Z(Bx — b)
-1 =1 -1
st. S Blvi+f=0, (73)
i=1 q2
£2L gzl (=1

Observing that the objective function is a strictly decreasing function of ©, any optimal solutions of the
problem (73) satisfy

=g /2k (i=1,....n"). (74)
Therefore, the problem (73) is equivalent to (D). Conditions (66) in Lemma 9.1 can be obtained from (69),
(70) and (74). O

The following lemma relates optimal solutions v of (IT) and (g, v) of (D):

Lemma 9.2 (Relation between (D) and (I1€)). ¥ is an optimal solution of (II€) if and only if (¢,v) satisfying
gi=|wll (=1,....n"), (75)

is an optimal solution of (D), where IT°(¥) = —¢" (g, 7).

Proof. For an optimal solution (g, ¥) of (D), (75) is satisfied because —/%g; decreases strictly in the feasible

region of (D). Accordingly, (D) is reduced to (IT) by converting the constraints ¢; > ||v;|| (i = 1,...,n™) to

the equalities ¢; = ||v;||, and by changing the sign of the objective function to transform maximization to
minimization, which completes the proof. [

Proof of Lemma 4.1. Lemma 4.1 follows from Lemmas 9.1 and 9.2 immediately. [
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10. Proof of Theorem 4.3

The discussion in this section is based on the framework of SOCP duality (Theorem 2.2). The following
two lemmas should be prepared to prove Theorem 4.3:

Lemma 10.1 (Strong duality of (Ps) and (Ds)). Under Assumption 3.1,

() (Ps) and (Ds) have optimal solutions (y,u,t) and (g, v, &), respectively, and ¢¢(q,v,1) = ¢3(q, v, &).
(ii) feasible solution (y,u,t) and (q,v,&) of (Ps) and (Ds), respectively, are optimal solutions if and only if
they satisfy

3+ 1)+ v [Bi(x*+a) —b] =0 (i=1,...,n"), (76)

ff0<%+1>+5i1<2t—/;—1>+5i2)7i=0 (i=1,....,n"). (77)

Proof. Assumption 3.1 guarantees Lemma 4.2(i), from which it is not difficult to see that the matrices A,
(i=1,...,2n™) defined by (17) satisfy Assumption 2.1(i).

Let 7°(Ps) C R> " and # %(Ds) € R™ denote the sets of interior-feasible solutions of (Ps) and (Ds),
respectively. By using Lemma 4.2(ii), we shall show that Assumption 3.1 guarantees Assumption 2.1(ii) is
satisfied. By using (64), we obtain

7 = { o> 5

1
ti > _kiy[z, yl+ l? > ||B,-(x0 +ll) _blH (l: 1,...,nm)},

where both # and y; are not bounded from above. Therefore, Z°(Ps) # () is always satisfied. From (69)—
(71), we obtain

e9/—;0(DS) = {(q7 v, 6)

n™m 2
ZB,.Tvi +f =0, (69), (70), £ >g—/i’ g > vl (i= 1,...,nm)},
i=1 i

where both € and ¢, are not bounded from above. Accordingly, #°(IT¢) # () implies #°(Ds) # 0, from
which and Lemma 4.2(ii) it follows that Assumption 3.1 guarantees #°(Ds) # 0.

Consequently, the assumption in Lemma 10.1 is equivalent to Assumption 2.1. Lemma 10.1(i) follows
from Theorem 2.2(i) immediately. By substituting (16) and (19) into (5), we obtain (76) and (77). Therefore,
Lemma 10.1(ii) follows from Theorem 2.2(i))b. [

As a consequence of Lemma 10.1, the following result about the duality between (P) and (D) is obtained:
Lemma 10.2 (Strong duality of (P) and (D)). Under Assumption 3.1,

(1) (P) and (D) have optimal solutions (y,u) and (q,v), respectively, and

¢"(g.%) = ¢"(q. ). (78)
(it) (p,m) and (q,v) are optimal solutions of (P) and (D), respectively, if and only if they satisfy
gi=ky (i=1,...,n"), (79)
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pm

i=1

Yo+ D= |B(x* +u) b (i=1,....,n"), (81)

gzl (i=1,....n"%), (82)

G+ 1)+ v [B(x* +u)—b] =0 (i=1,...,n"). (83)
Proof

(i) Recall that we have investigated the relation between (P) and (Ps) in Lemma 3.3, and the relation be-
tween (Ds) and (D) was given in Lemma 9.1. As a consequence of these lemmas, Lemma 10.1(i) follows
from Lemma 10.1(1).

(i) It follows from Lemmas 3.3, 9.1, and 10.1 that (y,#) and (g,7) are optimal solutions of (P) and (D),
respectively, if and only if feasible solutions (y,&,7) and (g,7, &) of (Ps) and (Ds) satisfy (13), (66),
(76) and (77). Therefore, we only have to show that the conditions (13), (66) and (77) are equivalent
to (79). By substituting (13) and (66) into the left-hand side of (77), we obtain

_ 7 _ g’ V2 > y:
é<%+->+g<; >+Qﬁ=(3ﬁ¢><ﬁ+¢>+<—ﬁﬂ%><f—l>+F@ﬁ

=2 =2
_4 ko] 7
= 2k,-+ Y A= % (kv — q:)",

which completes the proof. [

Note that (79)—(83) can be also obtained by using the KKT conditions for convex nonsmooth optimi-
zation problems (Rockafellar, 1970), where (83) corresponds to the complementarity condition.

Proof of Theorem 4.3. It follows from Lemma 3.2, Lemma 9.2 and Lemma 10.2(ii) that (¢, #") and »" are
optimal solutions of (IT) and (IT°), respectively, if and only if (¢"", "), y, and (g,v") defined by (11) and
(75) satisfy (6) and (79)—(83). After simple manipulation, the latter condition is reduced to

(11), (27), (28), (30), (84)
G=ky =" G=1,....n"), (85)
GG+ D)+ R =0 (i=1,....1"). (86)

It suffices to show that (29) is equivalent to (11), (85) and (86).

For =9 <! <0, (11) implies 3, = 0, from which and (85) we obtain v!' = 0; i.e., (29) is satisfied. Al-
ternatlvely, for e >0, (11) implies y; = ¢!". It follows from (27) and (28) that y; + ZO |A"||. By substi-
tuting this 1dent1ty into (85) and using (86) we obtain |[v7||[|A"]| + ™ A" = 0, which leads to

h!'
(i
where hII # 0 because of ¢! > 0. It follows from (7) and (85) that ||| = kic!' = 0,(c!"). Consequently, the

triple (c!', v, h") satisfies (29) if (11), (85) and (86) hold. Conversely, it is easy to see that (11), (85) and (86)
are satisfied if (29) holds. [

m—

(87)
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11. Conclusions

The minimum principle of complementary energy has been established for cable networks in geomet-
rically nonlinear elasticity.

The minimization problem (IT) of total potential energy for cable networks has been first formulated
allowing finite deformation, and its SOCP formulation (Ps) has been presented. Based on the duality of a
pair of primal-dual SOCP problems, the minimum principle of complementary energy is established; i.e.,
the minimization problem of complementary energy (I1€) is simply derived from the dual SOCP problem
(Ds) of (Ps). From the strong duality of SOCP, we have shown the strong duality theorem between (IT) and
(IT°), which guarantees that an optimal solution of (IT€) corresponds to a set of internal force vectors at the
equilibrium state.

It is known that, in general, the complementary energy function expressed only by stress components
cannot be uniquely determined, and minimum principle cannot be established even if the equilibrium state
is stable. On the contrary, it has been shown in this paper that cable networks have the unique comple-
mentary energy function and the minimum principle of complementary energy can be established irre-
spective of the stability of equilibrium state. Therefore, the presented principle may be actually useful in
practical application such as the force method. Moreover, the obtained complementary energy has been
interpreted physically based on the concept of complementary work in finite deformation.

The existence and uniqueness of the solution to the minimum complementary energy have been inves-
tigated. Based on the graph theory, we have presented the sufficient condition for existence of the solution
to the problem of minimum complementary energy allowing large deformation. This condition is related to
the topology and the support condition of cable networks, but is independent of the geometry of structures
and the property of external loads. From the strict convexity of the complementary energy function, the
sufficient condition for the uniqueness of equilibrium configuration of a cable network has also been
presented, which is also independent of its geometry and magnitudes of axial forces.

Existing approaches to complementary energy principle have been compared from the unified view point
of Lagrangian duality. It has been also shown that (D) can be obtained based on the framework of La-
grangian duality by utilizing the self-dual property of second-order cone, which has clarified how our
approach can avoid the difficulties of coupling of stress and displacement and uniqueness of inversion of
constitutive law.
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